neural correlates of chills as shown by a frozen brain

The neural correlates of chills: How bodily sensations shape emotional experiences

E4001, Manuscript, Proceedings

Get The Article

  • Article PDF
  • Cognitive, Affective, & Behavioral Neuroscience Article

Cite This Work

  • APA
  • MLA
  • Bibtex

Schoeller, F., Jain, A., Pizzagalli, D. A., & Reggente, N. (2024). The neurobiology of aesthetic chills: How bodily sensations shape emotional experiences. Cognitive, Affective, & Behavioral Neuroscience. https://doi.org/10.3758/s13415-024-01168-x

Schoeller, Félix, Abhinandan Jain, et al. “The neurobiology of aesthetic chills: How bodily sensations shape emotional experiences.” Cognitive, Affective, & Behavioral Neuroscience, Feb. 2024, doi:10.3758/s13415-024-01168-x.

@article{Schoeller_Jain_Pizzagalli_Reggente_2024, title={The neurobiology of aesthetic chills: How bodily sensations shape emotional experiences}, url={https://doi.org/10.3758/s13415-024-01168-x}, DOI={10.3758/s13415-024-01168-x}, journal={Cognitive, Affective, & Behavioral Neuroscience}, author={Schoeller, Félix and Jain, Abhinandan and Pizzagalli, Diego A. and Reggente, Nicco}, year={2024}, month=feb }

Neural Correlates of Chills: How the Brain Creates a Powerful Emotional Response

Aesthetic chills are a universal emotional response characterized by shivers and goosebumps in reaction to specific rewarding or threatening stimuli, such as music, films, or speech. What makes this phenomenon so intriguing is that it simultaneously involves subjective feelings and measurable physical sensations, providing a tangible link between the mind and body.

The Role of Brain Regions and Networks

Recent research has shed light on the specific brain regions and networks involved in the experience of aesthetic chills. Understanding the neural correlates of chills helps us delve into fascinating questions about the mind-body connection.

Our review highlights key questions that aesthetic chills can help us answer: How precisely do bodily sensations influence emotional experiences? What is the role of prediction and uncertainty in shaping our feelings? And how does the brain balance processing rewards versus threats?

neural correlates of chills are vast and span the cerebrum, cerebellum, and brainstem

The Mesocorticolimbic System: A Key Player in Chills

By synthesizing evidence from neuroimaging studies, we propose that aesthetic chills engage a distinct brain network involving the mesocorticolimbic system. This network includes regions like the ventral tegmental area (VTA), nucleus accumbens (NAcc), amygdala (AMG), and frontal areas such as the orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (vmPFC). Crucially, the VTA releases dopamine, a neurotransmitter critical for reward processing and motivation, throughout these regions.

Chills, Reward, Learning, and the Brain’s Predictions

neural correlates of chills seem to depend on the learning rate

We suggest that aesthetic chills may correspond to peaks in consummatory pleasure, marking the transition from the “wanting” phase of reward to the “liking” and “learning” phases. This perspective aligns with the observation that chills often occur during the culmination of an aesthetic experience, such as the resolution of a narrative or musical tension.

neural correlates of chills seem associated with the anticipation and reward response.

Interoception and the Insula

The involvement of the insula, a region linked to interoception (the perception of internal bodily states), highlights the importance of peripheral signals in shaping the emotional quality of chills. This is further supported by findings that manipulating bodily sensations, such as enhancing the feeling of cold, can intensify the experience of chills and its downstream effects on cognition.

Individual Differences and the Experience of Chills

Interestingly, our susceptibility to aesthetic chills seems to be influenced by individual differences in personality traits like openness to experience and absorption, as well as biological factors such as gene variants affecting neurotransmitter function. This suggests that our propensity for chills is shaped by a complex interplay of psychological and neurobiological factors.

Dopamine, Prediction Errors, and Learning

We propose that the neurotransmitter dopamine plays a key role in aesthetic chills by encoding the precision of our brain’s predictions. When an aesthetic stimulus violates our expectations in a way that is ultimately rewarding, dopamine release signals the need to update our predictions, enhancing memory consolidation and learning. This process may underlie the heightened attention and memory effects observed during chills.

Mental Health Implications

Understanding the neurobiology of aesthetic chills has important implications for mental health. Dysfunctional precision encoding of prediction errors by dopamine is implicated in conditions like schizophrenia, depression, and addiction. Preliminary evidence suggests that experiencing aesthetic chills may help mitigate anhedonia (loss of pleasure) in depression by improving reward learning and shifting maladaptive self-beliefs. The therapeutic potential of chills lies in their ability to promote positive emotional states and cognitive flexibility.

Read more
this predicting chills image shows a row of people and one with frost on their glasses

Predicting Chills – Characterizing Individual Differences in Peak Emotional Response

E4001, Manuscript, Proceedings

Get The Article

Cite This Work

  • APA
  • MLA
  • Bibtex

Schoeller, F., Christov-Moore, L., Lynch, C., Diot, T., & Reggente, N. (2024). Predicting Individual Differences in Peak Emotional Response. PNAS Nexus, 3(3). https://doi.org/10.1093/pnasnexus/pgae066

Schoeller, Félix, Leonardo Christov-Moore, et al. “Predicting Individual Differences in Peak Emotional Response.” PNAS Nexus, vol. 3, no. 3, Feb. 2024, https://doi.org/10.1093/pnasnexus/pgae066.

@article{Schoeller_Christov-Moore_Lynch_Diot_Reggente_2024, title={Predicting Individual Differences in Peak Emotional Response}, volume={3}, url={https://doi.org/10.1093/pnasnexus/pgae066}, DOI={10.1093/pnasnexus/pgae066}, number={3}, journal={PNAS Nexus}, author={Schoeller, Félix and Christov-Moore, Leonardo and Lynch, Caitlin and Diot, Thomas and Reggente, Nicco}, year={2024}, month=feb }

Predicting Chills: Unraveling the Factors Behind a Powerful Emotional Response

Have you ever felt a shiver run down your spine when deeply moved by a piece of music or a scene in a film? Those “aesthetic chills” offer a fascinating glimpse into the interplay of our emotions and our individual experiences. In a recent study published in PNAS Nexus, we aimed to understand what makes some people more likely to feel these chills.

The Study Design

Our approach was multifaceted:

  • Stimuli Selection: We used innovative data mining techniques on social media platforms to curate a database of stimuli with a proven track record of inducing chills.
  • Diverse Participants: We exposed a diverse group of over 2,900 participants from Southern California to these stimuli. Data on their demographics, personality traits, and emotional responses were carefully collected.

Key Findings: Who’s Most Likely to Experience Chills

Our results were illuminating:

  • Demographics: Certain demographic factors, such as being middle-aged, highly educated, and male, were associated with a greater likelihood of experiencing chills.
  • Personality’s Impact: We also identified specific personality traits, like extraversion and conscientiousness, that were linked to more intense chills responses.
  • Microcultures and Resonance: Perhaps the most intriguing finding was the use of latent class analysis to uncover hidden “microcultures.” These subgroups, characterized by specific combinations of demographic and psychological attributes, were significantly more likely to experience chills. This points to the role of cultural resonance in shaping these emotional experiences.
predicting chills is hard - this image shows a bunch of people in a where's waldo style backdrop all looking at different pieces of content

Predictive Power: Can We Foresee Chills?

We pushed the analysis further by employing machine learning algorithms to see if we could predict the occurrence and intensity of chills based on a combination of personal characteristics. Our models achieved up to 73.5% accuracy in predicting whether someone would experience chills and accounted for 48% of the variance in chills intensity.

The Significance of Our Work

This study has far-reaching implications. By identifying the key factors that shape our susceptibility to aesthetic chills, we open doors to more targeted and personalized approaches to studying these experiences in a laboratory setting. Furthermore, understanding these “chills profiles” could pave the way for using music, art, or other stimuli in therapeutic contexts – perhaps helping reduce symptoms like anhedonia in depression.

Read more
individual differences in aesthetic chills

Individual Differences in Aesthetic Chills

E4001, Manuscript, Proceedings

Cite This Work

  • APA
  • MLA
  • Bibtex

Schoeller, F., Moore, L., Lynch, C., & Reggente, N. (2023c). ChillsDB 2.0: Individual Differences in aesthetic chills among 2,900+ Southern California participants. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02816-6

Schoeller, Felix, et al. “ChillsDB 2.0: Individual Differences in Aesthetic Chills Among 2,900+ Southern California Participants.” Scientific data 10.1 (2023): 922.

@article{schoeller2023chillsdb, title={ChillsDB 2.0: Individual Differences in Aesthetic Chills Among 2,900+ Southern California Participants}, author={Schoeller, Felix and Christov Moore, Leo and Lynch, Caite and Reggente, Nicco}, journal={Scientific data}, volume={10}, number={1}, pages={922}, year={2023}, publisher={Nature Publishing Group UK London} }

Understanding Individual Differences in Aesthetic Chills

At IACS, we have been deeply engaged in the scientific exploration of aesthetic chills – those spine-tingling, goosebump-inducing responses evoked by stimuli such as music, films, and stories at large. These responses are recognized as a universal indicator of peak human experiences that transcend cultural boundaries.

Tools for Investigating Aesthetic Chills

One of our main goals is to build an open-source technological infrastructure for researchers to study chills in the lab. Our first output was ChillsDB, a database of audiovisual stimuli designed and validated to reliably induce aesthetic chills in a laboratory setting. This tool represented a breakthrough for the field, enabling researchers to investigate the psychological and neurological foundations of this intense emotional response under controlled conditions.

individual differences in aesthetic chills - this image shows a person viewing different pieces of content to emphasize how different people get chills from different content.

ChillsDB 2.0: Focusing on Individuality

We are now excited to announce the release of ChillsDB 2.0, published in Nature: Scientific Data, which marks a significant expansion of our initial efforts. In this updated version, we have enriched our dataset with inputs from nearly 3,000 diverse participants from Southern California. This enhancement not only includes responses to a selection of stimuli from our original database and new additions but also encompasses comprehensive data on participants’ demographics, personality traits, and emotional states before and after exposure to each stimulus.

The Therapeutic Potential of Aesthetic Chills

ChillsDB 2.0 has already proven to be a foundational resource for examining the therapeutic possibilities of aesthetic chills in treating conditions like depression. By elucidating the mechanisms behind these peak emotional states, we aim to discover novel methods for enhancing mood and introducing new perspectives to both clinical and general populations.

The Path Forward

While significant efforts are still required to comprehensively understand the phenomenology and neurobiology of aesthetic chills and to harness these insights for improving well-being, this new database represents an important step forward.

Read more
fetal brain complexity decreases at birth

Surprising new research reveals how fetal brain complexity declines before and after birth

Manuscript, Musings, Proceedings

Cite This Work

  • APA
  • MLA
  • Bibtex

Frohlich, J., Moser, J., Sippel, K., Mediano, P. a. M., Preissl, H., & Gharabaghi, A. (2024). Sex differences in prenatal development of neural complexity in the human brain. Nature Mental Health. https://doi.org/10.1038/s44220-024-00206-4

Frohlich, Joel, Julia Moser, Katrin Sippel, et al. “Sex differences in prenatal development of neural complexity in the human brain.” Nature Mental Health, Feb. 2024, doi:10.1038/s44220-024-00206-4.

@article{Frohlich_Moser_Sippel_Mediano_Preissl_Gharabaghi_2024, title={Sex differences in prenatal development of neural complexity in the human brain}, url={https://doi.org/10.1038/s44220-024-00206-4}, DOI={10.1038/s44220-024-00206-4}, journal={Nature Mental Health}, author={Frohlich, Joel and Moser, Julia and Sippel, Katrin and Mediano, Pedro a. M. and Preissl, Hubert and Gharabaghi, Alireza}, year={2024}, month=feb }

Fetal Brain Complexity: New Research Challenges Expectations

Even as birth nears, the complexity of brain activity decreases with fetal maturation and continues to decline after birth, according to results recently published in Nature Mental Health by a research team with key contributors from the University of Tuebingen, Germany and led by Dr. Joel Frohlich, who also serves as a research consultant for the Institute for Advanced Consciousness Studies in addition to his postdoctoral position in Tuebingen.

Sex Differences in Fetal Brain Development: A Surprising Finding

More surprising still, male and female fetuses show different changes in complexity, with boys declining faster than girls. According to the authors, the study’s findings carry important implications for future efforts to develop predictive biomarkers of psychiatric disorders based on the complexity of brain activity recorded before birth.

Investigating Fetal Brain Activity with MEG

The published manuscript, titled “Sex differences in prenatal development of neural complexity in the human brain”, was sparked by a two-year interdisciplinary collaboration between the laboratories of University of Tuebingen professors Alireza Gharabaghi and Hubert Preissl, with Frohlich serving liaison between the respective labs. Prof. Gharabaghi leads Tuebingen’s Institute for Neuromodulation and Neurotechnology, whose mission to develop new brain stimulation techniques led the institute to consider how sensory stimulation could be safely applied to investigate neural integrity in fetuses and infants, much in the same manner as electromagnetic brain stimulation is currently used in adults. When the collaboration began, Prof. Preissl, director of Tuebingen’s fMEG Center, had already supervised relevant experiments conducted by Dr. Julia Moser (now at the University of Minnesota) and Dr. Katrin Sippel, which gave the team the data they were looking for.

Fetal brain activity has already revealed evidence of learning before birth

The team used magnetoencephalography or MEG (a technology for detecting weak magnetic activity in the brain) to record neural signals non-invasively from third trimester fetuses and newborns. These signals were responses to sequences of auditory tones, which included patterns that were occasionally broken to test if fetuses (and, later, newborn infants) had successfully learned the original sequence. Two earlier research manuscripts, led by Moser, examined these data in the context of fetal and newborn learning and revealed evidence that fetuses respond to pattern violations as early as 35 weeks gestation, late in the third trimester of pregnancy. “Sensory stimulation provides us with a unique opportunity to observe how young brains process information from the outside. And all in a completely safe way,” explained Prof. Preissl in a recent press release.

In the current manuscript, the research team then applied several different algorithms to estimate the complexity of the MEG signals using entropy, or the number of possible ways in which states of the signal can be arranged. Some of these algorithms work by determining how difficult it is to compress the signal, as more complex data are harder to compress. To understand this better, consider the compressed size of two image files on your computer, one depicting a Vermeer painting and the other depicting a Rothko painting. The more complex image (Vermeer) will be harder to compress into a small file. Similarly, more complex brain signals are harder to compress, allowing scientists to estimate their entropy.

A pregnant woman positioning the fetus into the MEG.

Surprising results from fetal brain activity

The researchers originally hypothesized that fetal brain activity would grow more complex with maturation. To their surprise, the opposite occurred. “Intuitively, I had thought that as the brain matures, its activity should grow more complex just as its anatomy and function grows more complex,” said Frohlich. “In hindsight though, it makes a decent amount of sense, especially considering the fact that we recorded brain activity evoked by sensory signals, rather than spontaneous activity.” As the brain develops, it moves away from random patterns toward more ordered modes of activity sculpted by emerging synaptic connections. These connections constrain the number of ways in which the brain can respond to stimuli such as the auditory patterns in the experiment. This is likely why more mature fetal brains showed less complex activity in their responses: these brains had fewer ways of responding to the same stimulus, and thus lower complexity. According to Frohlich, if the experiment had instead looked at spontaneous brain activity in the absence of stimuli, the results might have been different.

Crucial to the team’s conclusions were contributions from Imperial College London professor Pedro Mediano, who shared a sophisticated mathematical algorithm which allowed the team to determine which properties of the fetal brain signals were driving the decrease in their complexity. Using Mediano’s approach, the team found that changes in the amplitude or “strength” of the signal were related to the decreasing complexity. In fact, the effect of amplitude appeared to mask changes caused by another property of the signal, phase, which opposed complexity by driving increases in complexity with maturation. The presence of two opposing processes might partially explain the team’s surprising results with respect to maturation.

However, the effects of fetal sex are still leaving the team slightly puzzled. “I didn’t expect fetal sex to have any impact on neural complexity,” said Frohlich, “but it’s possible that this relates to the greater vulnerability of the male brain during gestation, as many neurodevelopmental disorders, like autism and ADHD, are diagnosed more frequently in boys.” Frohlich is inspired by earlier studies that have linked the complexity of neural activity to brain health, including one previous study which predicted the onset of autism years later from brain activity recorded in young infants. Neurodevelopmental disorders such as autism are best prevented very early in life while the brain is still highly plastic, which creates a need for early detection of risk. “The earlier we identify the risk of developing neuropsychiatric and metabolic disorders, the more effectively we can support brain development to prevent serious illness,” explained Prof. Gharabaghi in a press release.

Looking toward the future

According to Frohlich, whose 2018 PhD dissertation focused on biomarkers of neurodevelopmental disorders, the next step in this line of work will be to follow fetuses several years after birth to see whether the complexity of their fetal brain activity predicts later outcomes such as autism or ADHD. “For example, you could recruit pregnant women who already have a child with autism, which means that the fetus has some familial risk of also developing it. By recording brain activity from the fetus and then following up with the family three years later, you could see if the complexity of prenatal brain activity is predictive of an eventual diagnosis.”

Read more
is cannabis psychedelic? Kind of!

Is Cannabis Psychedelic?

Manuscript, Musings, Proceedings

Cite This Work

  • APA
  • MLA
  • Bibtex

Murray, C. H., Frohlich, J., Haggarty, C. J., Tare, I., Lee, R., & De Wit, H. (2024). Neural Complexity Is Increased After Low Doses of LSD, but Not Moderate to High Doses of Oral THC or Methamphetamine. Neuropsychopharmacology. https://doi.org/10.1038/s41386-024-01809-2

“Neural Complexity Is Increased After Low Doses of LSD, but Not Moderate to High Doses of Oral THC or Methamphetamine.” Neuropsychopharmacology, Jan. 2024, doi:10.1038/s41386-024-01809-2.

@article{Murray_Frohlich_Haggarty_Tare_Lee_De Wit_2024b, title={Neural Complexity Is Increased After Low Doses of LSD, but Not Moderate to High Doses of Oral THC or Methamphetamine}, url={https://doi.org/10.1038/s41386-024-01809-2}, DOI={10.1038/s41386-024-01809-2}, journal={Neuropsychopharmacology}, author={Murray, Conor H. and Frohlich, Joel and Haggarty, Connor J. and Tare, Ilaria and Lee, Royce and De Wit, Harriet}, year={2024}, month=jan }

Cannabis and the Psychedelic: A Historical Perspective

In 1857, the American writer Fitz Hugh Ludlow described his experiences with hashish in his memoir The Hasheesh Eater: Being Passages from the Life of a Pythagorean:

“It is this process of symbolization which, in certain hasheesh states, gives every tree and house, every pebble and leaf, every footprint, feature, and gesture, a significance beyond mere matter or form, which possesses an inconceivable force of tortures or of happiness.”

Delving into Terminology: What Does “Psychedelic” Really Mean?

For Ludlow, hashish infused meaning into everyday objects; his experiences seemed to reveal new parts of the mind, with either blissful or terrifying effects. In 1956, the psychiatrist Humphrey Osmond coined a term to encapsulate such “mind-manifesting” phenomena: psychedelic. Both then and now, the term is mostly applied to drugs like LSD that powerfully alter one’s perception through their action at a specific neurotransmitter receptor called 5HT2a, which receives signals from serotonin, one of the brain’s main chemical messengers. These “classic psychedelics” have a very different pharmacology than tetrahydrocannabinol, or THC, the main active chemical in cannabis. Unlike LSD and the so-called “classic psychedelics”, THC acts similarly to a different class of neurotransmitters called endocannabinoids, which send signals “backwards” across synapses in the brain to regulate neuronal firing. The effects of THC include changes in perception, appetite, and mood; “inconceivable force of tortures or of happiness” as Ludlow described it. But, is this experience “psychedelic”?

Let’s consider the classic psychedelics, like LSD and psilocybin, the main active compound in magic mushrooms. A well known effect of these psychedelics is an increase in the complexity or “diversity” of neural activity. According to one theory, brain complexity during the psychedelic state reflects the increased richness of subjective experience. In short, your experience of the world becomes more complex on psychedelics, and so to does the electrical activity of your cerebral cortex.

The Science of Psychedelic Effects: THC vs. Classic Psychedelics

Recently published work led by my collaborator Conor Murray at UCLA investigated whether oral THC would also increase neural complexity. While at the University of Chicago, Murray and his colleagues recorded electrical brain activity using a non-invasive technology called EEG while one group of healthy volunteers took THC in pill form and another group took a tiny “microdose” of the classic psychedelic LSD in another session (a microdose here means a tiny dose with barely noticeable effects). Note that this THC pill contained synthetic THC, or Marinol, rather than extract from the cannabis plant. Marinol doesn’t contain other cannabis compounds like CBD, and so its effects may be different from those of real cannabis products. Furthermore, some individuals have a genetic background which impairs their liver’s ability to metabolize THC, and these people will be more impacted by oral THC than smoked or vaped THC.  

To also examine how LSD and oral THC compared to a stimulant drug that lacks perception-altering effects, the University of Chicago researchers gave a third group of healthy volunteers a medical preparation of methamphetamine. This medical preparation, similar to what is occasionally prescribed for attention deficit hyperactivity disorder or ADHD, isn’t smoked like “crystal meth”, the drug’s street form, but it still has powerful effects on alertness and attention. For all drugs given in the laboratory—THC, LSD, and methamphetamine—some volunteers took the real drug while others took an inactive placebo.

So, how did these drugs affect the volunteers? When asked how much they felt the drug effect, volunteers felt the most “high” during the THC session, something like a solid 6 or 7 if rated on a scale out of 10. Both the methamphetamine and LSD drug effects were weaker, which isn’t too surprising given that the LSD was only given as a microdose. Furthermore, both THC and LSD increased anxiety, though this effect was stronger in the case of THC.

Exploring Neural Complexity: Does THC Alter Brain Activity Like Psychedelics?

But what about effects on brain activity? I contributed to the study by guiding an analysis of neural complexity. Surprisingly, when each drug’s effect on neural complexity was compared with a placebo, only LSD caused a statistically significant increase in the complexity of brain activity. THC simply did not alter the complexity of EEG signals at significant level, and the small effects it did exert were a mixture of increases and decreases at different EEG sensors.

Psychedelic, or Not? Subjectivity Matters

So, does this mean that oral THC and edible cannabis products aren’t psychedelic? Not so fast. First of all, the changes in complexity observed with LSD didn’t correlate with the drug’s subjective effects, which suggests that the diversity of neural signals changes even before strong effects in one’s mental experience occur. However, this might have been different if participants had been given a larger, “macrodose” of LSD, as other studies have found correlation between neural complexity and the felt effects of macrodosed psychedelics.

Additionally, it’s important to remember that volunteers took Marinol, which lacks the other natural chemicals or “cannabinoids” found in the cannabis plant, such as CBD. Although the main effects of cannabis are exerted by THC, it’s possible that THC also interacts with other cannabinoids, which alter its effects. In other words, a different study using extracts from the cannabis plant might have yielded different results.

is cannabis psychedelic? -- man sits with blindfold after using cannabis surrounded by candlelights.

The Potential Role of Cannabis in Psychedelic Therapy

But finally, and most importantly, we need to remember what the word psychedelic means: to manifest the mind. Many experiences, including some that don’t involve any drugs, reveal hidden aspects of the mind, including meditation, breathwork, and floating in a sensory reduction float tank. In the case of meditation, it’s somewhat unclear whether this activity is accompanied by increases or decreases in neural complexity. But as far as a psychedelic quality is concerned, the ground truth in each case is whatever a person reports: if experiences with meditation or cannabis seems to manifest hidden aspects of the mind, then why can’t we call these experiences psychedelic?

Nonetheless, I think Murray’s recent EEG study of THC has important implications for psychedelic therapy. Psychotherapy, assisted by classic psychedelic compounds like LSD and psilocybin, is now being studied in many countries as a treatment for depression, addiction, and anxiety surrounding terminal illness. All clinical trials must compare these compounds to an inactive placebo (a pill with no effects) to determine if any benefit the patient experiences is really due to the drug or just due to what the patient expects will happen, a self-fulfilling prophesy of sorts. Because most psychiatric drugs have rather subtle effects—you don’t really notice much after popping a Prozac pill—placebo controlled trials generally work well. Classic psychedelics like LSD, on the other hand, have extremely obvious effects—participants know when they’re assigned to the placebo group, which alters their expectations of whether their symptoms will improve.

One solution to this problem would be to use an active placebo—a compound with noticeable, yet different, effects than a classic psychedelic drug like LSD. An active placebo would be as similar as possible to LSD without actually sharing its possible therapeutic properties. Drugs that act at the 5HT2a receptor, like LSD and psilocybin, are not merely psychedelic; they also increase the brain’s capacity to change and rewire itself, which is likely key to their ability to help pull people out of depression. In this context, the drugs are known as “psychoplastogens”. Cannabis, on the other hand, is not a psychoplastogen—as bizarre as a given experience with cannabis may be, it is unlikely to trigger massive rewiring of the brain comparable to changes induced by LSD. And yet, it may cause strong alternations in perception, which follow a long time course when taken orally (as a pill or edible) similar to classic psychedelics, often needing up to an hour or two to start after the oral dose is consumed. This might make cannabis a better comparison in psychedelic drug trials than a simple, inactive placebo. In such a trial, it would be less obvious to participants which treatment they had been assigned to, helping to control for expectancy effects.

Regardless of whether neural complexity changes track how psychedelic a substance feels, its specificity to LSD in Murray’s study suggests that it might be a biomarker specific to effects caused by LSD and not THC. If future studies show that neural complexity tracks some therapeutic property of LSD that THC lacks, then clinical trials of psychoplastogens might use neural complexity to differentiate between effects of the treatment versus another psychoactive drug used as a control, like oral THC. This idea is supported by the fact that ketamine, another psychoplastogen with antidepressant properties (albeit one that does not act at 5HT2a receptors) is also known to increase neural complexity.

Defining ‘Psychedelic’ and the Importance of Respectful Use

At the end of the day, the question of whether cannabis, edible or otherwise, is “psychedelic” is really a matter of semantics—how do we define psychedelic? And whether or not it’s regarded as psychedelic, THC shows both important differences and similarities with classic psychedelics like LSD. While these drugs have different uses and risks, THC may be comparable enough with classic psychedelics to serve the much needed purpose of providing a psychoactive control in psychedelic therapy.

Finally, whether or not you consider cannabis to be psychedelic, it and other psychoactive substances should be treated with respect and caution. Drugs discussed in this article have the ability to alter the mind, which, depending on the context and intentions behind their use, can be either therapeutic or harmful.

Read more
Aesthetic chills mitigate maladaptive cognition in depression-- an important finding showcasing the power of positive affect promotion.

Aesthetic chills mitigate maladaptive cognition in depression

E4001, Manuscript, Proceedings, Review

Get The Article

Cite This Work

  • APA
  • MLA
  • Bibtex

Schoeller, F., Jain, A., Adrien, V., Maes, P., & Reggente, N. (2024). Aesthetic chills mitigate maladaptive cognition in depression. BMC Psychiatry, 24(1). https://doi.org/10.1186/s12888-023-05476-3

“Aesthetic Chills Mitigate Maladaptive Cognition in Depression.” BMC Psychiatry, vol. 24, no. 1, Jan. 2024, https://doi.org/10.1186/s12888-023-05476-3.

@article{Schoeller_Jain_Adrien_Maes_Reggente_2024c, title={Aesthetic chills mitigate maladaptive cognition in depression}, volume={24}, url={https://doi.org/10.1186/s12888-023-05476-3}, DOI={10.1186/s12888-023-05476-3}, number={1}, journal={BMC Psychiatry}, author={Schoeller, Félix and Jain, Abhinandan and Adrien, Vladimir and Maes, Pattie and Reggente, Nicco}, year={2024}, month=jan }

Using peak positive affect (aesthetic chills) to help with depression

In our recent collaboration with Pattie Maes’s Fluid Interfaces group at MIT Media Lab and Dr. Vladimir Adrien from Assistance Publique Hôpitaux de Paris (APHP) in France, we investigated the potential for aesthetic chills to serve as an innovative intervention for major depressive disorder. This effort is a considerable advancement towards the notion of promoting positive affect in depression, which stands in contrast to standard care which is mostly focused on mitigating negative affect.

Instead of focusing on how to help individuals with depression not feel so bad, this work suggests the potential of helping those individuals by presenting them with content so they can feel good.

Aesthetic chills are characterized by sensations like shivers, goosebumps, and tingling that arise in response to emotional experiences with art, music, or nature. We hypothesized that by eliciting chills through validated multimedia stimuli, we could positively influence the core beliefs and self-schemas of individuals with depression. Across two studies with 96 participants diagnosed with major depressive disorder, we engaged participants in randomized sessions involving chill-inducing and neutral control stimuli across visual, auditory, and written modalities. Our results demonstrated that aesthetic chills induced a notable increase in self-acceptance among depressed participants. Chill-inducing stimuli appeared to facilitate positive emotional breakthroughs and shifts in self-perception that could address cognitive distortions related to depression. The data further suggest that aesthetic chills may engage reward-related neural pathways similarly to interventions like psychedelic-assisted therapy.

Individuals with major depressive disorder reported more emotional breakthroughs in their maladaptive cognition (e.g., lack of self-acceptance) when they reported getting chills compared to individuals who viewed the same content, but didn’t get chills. This also scaled as a function of the intensity of those chills.

While preliminary, these findings bring much-needed attention to the potential for aesthetic chills to positively influence core beliefs and schemas related to the self and one’s place in the world. For individuals with depression stemming from early adverse experiences, chill-inducing stimuli could foster emotional catharsis and lasting change to maladaptive self-narratives developed as coping mechanisms. Our research provides initial evidence that the biological processes involved in aesthetic chills can be harnessed for therapeutic ends. Chill-based interventions offer a promising avenue for large-scale study given the ease of dissemination through multimedia experiences.

Looking forward, further research should explore the neurophysiological mechanisms of aesthetic chills and biomarkers that may predict individual responses. Larger clinical trials are needed to investigate optimal protocols and delivery methods for chill-based therapy. We believe aesthetic chills represent an innovative non-pharmacological intervention that warrants greater attention from the psychiatry, psychology, and human-computer interaction communities.

shift + ⏎ to add a ne

Read more
interoceptive technologies for clinical use cases

Interoceptive Technologies for Psychiatric Interventions: A Comprehensive Review

E4001, Manuscript, Proceedings, Review

Cite This Work

  • APA
  • MLA
  • Bibtex

Schoeller, F., Horowitz, A. H., Jain, A., Maes, P., Reggente, N., Christov-Moore, L., . . . Friston, K. J. (2024). Interoceptive technologies for psychiatric interventions: From diagnosis to clinical applications. Neuroscience & Biobehavioral Reviews, 156, 105478. https://doi.org/10.1016/j.neubiorev.2023.105478

Schoeller, Félix, Adam Haar Horowitz, et al. “Interoceptive Technologies for Psychiatric Interventions: From Diagnosis to Clinical Applications.” Neuroscience & Biobehavioral Reviews, vol. 156, Jan. 2024, p. 105478. https://doi.org/10.1016/j.neubiorev.2023.105478.

@article{Schoeller_Horowitz_Jain_Maes_Reggente_Christov-Moore_Pezzulo_Barca_Allen_Salomon_et al._2024, title={Interoceptive technologies for psychiatric interventions: From diagnosis to clinical applications}, volume={156}, url={https://doi.org/10.1016/j.neubiorev.2023.105478}, DOI={10.1016/j.neubiorev.2023.105478}, journal={Neuroscience & Biobehavioral Reviews}, author={Schoeller, Félix and Horowitz, Adam Haar and Jain, Abhinandan and Maes, Pattie and Reggente, Nicco and Christov-Moore, Leonardo and Pezzulo, Giovanni and Barca, Laura and Allen, Micah and Salomon, Roy and Miller, Mark and Di Lernia, Daniele and Riva, Giuseppe and Tsakiris, Manos and Chalah, Moussa A. and Klein, Arno and Zhang, Ben and Garcia, Teresa and Pollack, Ursula and Trousselard, Marion and Verdonk, Charles and Dumas, Guillaume and Adrien, Vladimir and Friston, Karl J.}, year={2024}, month=jan, pages={105478} }

What Is Interoception?

Interoception refers to our awareness of internal bodily signals like heartbeat, breathing, and digestion. While often overlooked, emerging research is revealing interoception as a fundamental process underlying emotion, cognition, and mental health. A new multidisciplinary review led by IACS senior research scientist Felix Schoeller and published in Neuroscience & Biobehavioral Reviews explores the profound significance of interoception and its potential applications in psychiatric diagnosis and treatment.

Directly manipulating interoceptive signals in experiments has proven challenging due to the highly invasive techniques currently used, like esophageal balloon distension. There is also a lack of standardized, validated measures of interoceptive function across research disciplines as “the lack of correlation across unimodal tests underscores the need for multimodal approaches that assess integration of interoceptive information across bodily systems.” Drawing from fields like psychology, physiology, psychiatry, engineering, and neuroscience, the article provides a detailed account of the neurobiology of interoception, describing it as a hierarchical predictive processing system in the brain, and emphasizing the key role of dysfunctional interoceptive processing in disorders like anxiety, depression, and eating disorders.

What are Interoceptive Technologies?

The review also explores in details existing paradigms for modulating interoception, like interoceptive conditioning. This involves pairing internal bodily sensations with aversive stimuli to reshape emotional and physiological responses through a form of classical conditioning. The authors discuss clinical applications of these approaches, such as interoceptive exposure therapy for anxiety disorders. They also propose a new classification system for interoceptive technologies, dividing them into three categories: artificial sensations that induce novel bodily perceptions, interoceptive illusions that manipulate the precision of predictions, and emotional augmentation systems that facilitate beneficial changes in beliefs or behaviors.

interoceptive technologies examples

Figure 1. Overview of interoceptive technologies: A) the breath-holding test as an artificial sensation, whereby some bodily signal is directly manipulated, B) false heart feedback as an interoceptive illusion, where contextual cues generate a perceptual drift (here the illusion that the heart beats faster at a faster-than-expected rate), C) the therapeutic alliance as entrainment, where the patient’s heart rate slows down as the therapist’s is increasing, leading both to tend towards some average value, D) augmented exposure therapy as emotional augmentation, similar to B but with additional exteroceptive cues having personal significance to the individual (e.g. eliciting the trauma-related memory) favoring an emotional explanation for the interoceptive drift.

Such technologies could have powerful implications. Artificially inducing bodily sensations could help diagnose psychiatric conditions by testing patients’ susceptibility to developing skewed predictions about their internal state. More advanced emotional augmentation systems could precisely modulate predictive processes to reshape maladaptive cognitions and behaviors. While acknowledging that much remains unknown, the review shows the vast potential for interoceptive interventions to improve diagnosis and treatment of mental health disorders. Developing standardized measures and new technologies to precisely manipulate interoceptive signaling may open transformative frontiers in biological psychiatry and psychology.

Read more
infant consciousness in the lab

New research sheds fresh light on mystery of infant consciousness

Manuscript, Proceedings, Review

Get The Article

  • Article PDF
  • Trends in Cognitive Science Article

Cite This Work

  • APA
  • MLA
  • Bibtex

Bayne, T., Frohlich, J., Cusack, R., Moser, J., & Naci, L. (2023). Consciousness in the cradle: on the emergence of infant experience. Trends in Cognitive Sciences.

Bayne, Tim, et al. “Consciousness in the cradle: on the emergence of infant experience.” Trends in Cognitive Sciences (2023).

@article{bayne2023consciousness, title={Consciousness in the cradle: on the emergence of infant experience}, author={Bayne, Tim and Frohlich, Joel and Cusack, Rhodri and Moser, Julia and Naci, Lorina}, journal={Trends in Cognitive Sciences}, year={2023}, publisher={Elsevier} }

New research sheds fresh light on mystery of infant consciousness

When does consciousness begin? There is evidence that some form of conscious experience is present by birth, and perhaps even in late pregnancy, an international team of researchers led by Tim Bayne of Monash University in Melbourne, Australia and Joel Frohlich of the University of Tuebingen in Germany and the US-based Institute for Advanced Consciousness Studies in Santa Monica, California has concluded in a new review manuscript. The findings, just published in the peer-reviewed journal ‘Trends in Cognitive Science’, have important clinical, ethical, and potentially legal implications, according to the authors.

In the study, entitled ‘Consciousness in the cradle: on the emergence of infant experience’, the researchers argue that, by birth, the infant’s developing brain is likely capable of conscious experiences. Although each of us was once a baby, infant consciousness remains mysterious, because infants cannot tell us what they think or feel, explains one of the two lead authors of the paper Dr. Tim Bayne, Professor of Philosophy at Monash University. 

“Nearly everyone who has held a newborn infant has wondered what, if anything, it is like to be a baby. But of course we cannot remember our infancy, and consciousness researchers have disagreed on whether consciousness arises ‘early’ (at birth or shortly after) or ‘late’ ­– by one year of age, or even much later.”

To provide a new perspective on when consciousness first emerges, the team reviewed recent advances in consciousness science. In adults, some markers from brain imaging have been found to reliably differentiate consciousness from its absence, and are increasingly applied in science and medicine. This is the first time that these advances, as translated to infants, have been reviewed in detail.

Co-author of the study, Dr. Lorina Naci, Associate Professor at Trinity College Dublin in Ireland, who leads the ‘Consciousness and Cognition Group’, explained: “Our findings suggest that newborns can integrate sensory and developing cognitive responses into coherent conscious experiences to understand the actions of others and plan their own responses.”

It is even possible that birth itself triggers the onset of consciousness. “Probably the first thing the newborn infant realizes is that the outside world is very unpredictable relative to the womb environment,” explained co-lead author and postdoctoral researcher  Dr. Joel Frohlich. “Things are constantly changing, and so the newborn must build a mental model of the world to adapt and predict things.” 

However, the authors don’t rule out the possibility that consciousness might already start some weeks beforehand.  “Julia Moser’s work shows that third-trimester fetuses appear to be capable of learning sequences of auditory beeps,” said Dr. Frohlich, referring to his co-author Dr. Moser at the University of Minnesota. “When an auditory tone deviates from a pattern established earlier in the experiment, the fetus shows this ‘surprise’ response in its magnetic brain activity. The neural activity shows a field deflection as if the fetus is saying ‘huh?’.”

The paper also sheds light into ‘what it is like’ to be a baby. We know that seeing is much more immature in babies than hearing, for example (see the image below for a theoretical depiction). Furthermore, this work suggests that, at any point in time, infants are aware of fewer items than adults, and can take longer to grasp what’s in front of them, but they can easily process more diverse information, such as sounds from other languages, than their older selves. 

infant consciousness differences in perception

“Infants can perceive many things which adults cannot, like the differences between vowel sounds in a foreign language,” explained Dr. Joel Frohlich. “By 10 months or so, we lose this ability as the brain decides these perceptual differences are no longer relevant and discards them.” 

Read more
woman doing a grocery task, showcasing the need for VR for cognition and memory

VR for Cognition and Memory

Manuscript, Proceedings, Protocol-002

This blog post is based on a recent book chapter “VR for Cognition and Memory” in Current Topics in Behavioral Neuroscience: Virtual Reality in Behavioral Neuroscience: New Insights and Methods. This work presents a review of research on VR’s ability to provide ecologically valid environments to study memory and cognition and discusses how features like interactivity, locomotion, and contextual control engage the brain’s memory systems more naturally than lab studies.

Get The Article

  • PDF
  • Paywalled Chapter

Cite This Work

  • APA
  • AMA
  • MLA

Reggente N. (2023). VR for Cognition and Memory. Current topics in behavioral neurosciences, 10.1007/7854_2023_425. Advance online publication. https://doi.org/10.1007/7854_2023_425

Reggente N. VR for Cognition and Memory [published online ahead of print, 2023 Jul 14]. Curr Top Behav Neurosci. 2023;10.1007/7854_2023_425. doi:10.1007/7854_2023_425

Reggente, Nicco. “VR for Cognition and Memory.” Current topics in behavioral neurosciences, 10.1007/7854_2023_425. 14 Jul. 2023, doi:10.1007/7854_2023_425

Revolutionizing Cognition Research with Virtual Reality

For decades, scientists have worked tirelessly to elucidate the intricate neural machinery supporting human cognition. This endeavor is certainly not for the faint of heart, as formidable challenges present themselves at every turn.

“To study cognition holistically means investigating interconnections between its rich repertoire of functions, including attention, reasoning, language, and memory. Memory is a particularly crucial facet, as it supports and subserves all other aspects of cognition; no cognitive task can be accomplished without memory.”

A holistic understanding demands that we study cognition as it operates in its natural habitat – the real world. Otherwise, as the parable of the blind men and the elephant warns, we risk gross mischaracterizations. Researchers must therefore conduct experiments in “verisimilar contexts (i.e. contexts appearing as the RW)” to achieve ecological validity.

Virtual reality (VR) presents an unprecedented opportunity in this regard. By simulating the real world, we can now study memory and cognition with enhanced veridicality.

“The environmental customization afforded by VR makes it an ideal tool for studying cognition in an ecologically valid fashion. Through the lens of memory studies, this chapter showcases the ways in which VR has advanced a meaningful and applicable understanding of cognition.”

The article presents a thorough review of research that showcases how VR is revolutionizing the study of cognition and memory.

Bridging the Gap Between Lab and Real-World Cognition

Traditional lab experiments often possess limited generalizability, whereas VR can provide naturalistic environments and tasks that echo real-world demands, easily bolstering ecological validity. Previous work has made a compelling case for how VR enhances the ecological validity of fMRI memory research.

VR experiences engage recollection-based memory retrieval akin to real events, unlike lab stimuli which rely more on familiarity. Indeed, VR experiences appear to be retrieved via recollection-based processes similar to those that support autobiographical/recollection memory, whereas retrieval of conventional screen experiences seems more similar to familiarity. This makes VR apt for integrated cognition and memory research.

VR Permits for Information to be Situation in Space

Most importantly, VR permits realistic navigation around virtual environments (c.f.), affording users with a sense of space (the scaffolding of memory). Both philosophers and psychologists alike postulate that brains have evolved solely to support purposeful and predictable movement. Many posit that the ontogeny of episodic memory relates to the onset of locomotion during infancy that scales with Hippocampal development (which also provides a mechanism for infantile amnesia and age-related episodic memory loss). One source of evidence to support this proposition is in the life cycle of the bluebell tunicate. This filter feeder begins to digest a substantial chunk of its cerebral ganglion once identifying a suitable undersea perch to spend the rest of its existence. This phenomenon suggests that once it has served its purpose as a neural network supporting movement, the cerebral ganglion yields greater utility to the organism as nutrition.

From chemotaxis to cognitive maps, a representation of space is necessary for meaningful movement. A neural instantiation of a map that provides spatial bookmarks of an organism’s experiences, demarcating the locations of nutrition and enemies within an environment, is a fundamental component of brains. Indeed, there is a primacy of spatial content in the neural representation of events. Spatial information is often recalled earliest in the retrieval process, and the degree to which individuals report confidence in their autobiographical memories is predicted by their knowledge of the spatial layout of the setting in which the memory occurred. The Method of Loci (a.k.a. Memory Palace) mnemonic has long been appreciated for its ability to increase memory by imagining to-be-remembered information placed at familiar locations. Past work used a VR implantation of this technique to suggest that the principal component behind mnemonic efficacy is the explicit binding of the objects to a spatial location and revealed a tight relationship between spatial memory (SM) and free recall of encoded objects. These observations showcase that space and memory are inextricably linked at conceptual and neuronal levels – a notion that has become entrenched in popular culture; the phrase “out of space” is often used when indicating a computer’s memory is full.

a fantastical virtual environment that could be used to study the relationship between objects, positions, and memory.

If space is the inescapable wallpaper that serves as the backdrop for all experience, then it follows that as our spatial or environmental context changes, so should the neural activity underlying diverse cognitive processes. Given that VR can easily change environments, it provides an unparalleled landscape with which to study the intersection of space, memory, and cognition.

Additionally, VR enables human analogs of spatial memory research previously limited to animal models, like virtual radial arm mazes. This facilitates powerful translational research from rodents to humans.

Key Features of VR That Facilitate Cognition Research

Below are some features highlighted by the chapter that are exclusive to VR. Such features permit real-world scenarios with increased experimental control and significantly less costs.

  • VR provides absolute control over the environment. This permits isolation and systematic manipulation of spatial contexts, immersion, emotions, embodiment, etc.
  • Rapid teleportation between environments induces robust context-dependent learning, a fundamental principle in memory encoding.
  • Interactivity and locomotion increase embodiment and navigational involvement, enhancing hippocampal memory systems.
  • Implicit metrics like gaze, paths, and object interactions generate objective measures of memory and attention unbiased by subjective reporting.
  • Brain imaging during VR reveals in vivo neural correlates of cognition impossible with real-world navigation.
  • VR spatial mnemonics such as the Method of Loci can provide performance improvements over just imagination by standardizing and controlling the environments.

Applications of VR for Assessing and Enhancing Cognition

Conventional measures of memory typically focus on core content (i.e., the “what”) instead of the true binding that happens in actual episodes (i.e., “what,” where,” and “when”). They also often use verbal materials, which makes the test sensitive to performance in non-memory domains, permitting for compensatory strategies which could erroneously reveal normal “memory.” Subjective reports rarely scale with performance on traditional memory tests, warranting criticism that such measures wrongly estimate memory capacities for everyday situations. For example, patients reporting topographical memory deficits have preserved ability in tabletop tests of spatial or geographical knowledge. Additionally, cognitive complaints in amnesiacs typically show little correlation with verbal memory tests used in clinical settings.

VR tasks, however, have been more reliable in tracking self and caregiver reports of deficits that impact quality of life. The points below highlight other aspects of VR that can increase the ecological validity of both the detection and amelioration of memory deficits.

  • VR scenarios like virtual stores and routes enable sensitive, ecologically valid tools to identify mild cognitive impairment early.
  • VR spatial navigation paradigms can differentiate Alzheimer’s from milder impairment based on hippocampal recruitment patterns.
  • VR enables safe exposure therapy for memory deficits induced by trauma and realistic training for brain injury rehabilitation.
  • Spatial mnemonic techniques adapted to VR boost memory beyond baseline abilities in healthy individuals.
  • VR puzzles engage aging minds, increasing motivation. Long-term regimes may prevent decline. As one study found, “6 months of VR training powerfully increased long-term recall.”
  • VR training could augment real-world cognition and rehabilitate deficits, with proven memory transfer effects.

In conclusion, VR enables an unprecedented ability to understand real-world cognition, precisely diagnose impairments, and develop interventions that enhance memory and cognition. The immersive, interactive nature of VR environments engages our brains’ memory systems far more naturally than traditional lab studies.

The inherently engaging qualities of VR, coupled with its ability to implicitly quantify and enhance memory, make it a powerful tool in populations spanning from pediatrics to the elderly.

Indeed, VR may catalyze discoveries about the very mechanisms underlying human consciousness itself, which intimately relies on episodic memory. By augmenting these processes, VR could profoundly transform our experience and understanding of consciousness. The future of cognition research has never looked more exciting.

Read more
artificial empathy could create an artificial boddhisattva

Sociopathic Superintelligences, Artificial Empathy, and Robot Bodhisattvas, Oh My!

E4001, Manuscript

This blog post is based on a recent publication “Preventing antisocial robots: A pathway to artificial empathy” at Science Robotics

Get the Article

  • PDF
  • Paywalled Article

Preventing Antisocial Robots: A Pathway to Artificial Empathy

PDF

Preventing antisocial robots: A pathway to artificial empathy at Science Robotics

Cite This Work

  • APA
  • MLA
  • Chicago
  • Harvard
  • Vancouver

Christov-Moore, L., Reggente, N., Vaccaro, A., Schoeller, F., Pluimer, B., Douglas, P. K., Iacoboni, M., Man, K., Damasio, A., & Kaplan, J. T. (2023). Preventing antisocial robots: A pathway to artificial empathy. Sci. Robot, 8, eabq3658. https://doi.org/10.1126/scirobotics.abq3658

Christov-Moore, Leonardo, et al. “Preventing Antisocial Robots: A Pathway to Artificial Empathy.” Sci. Robot, vol. 8, eabq3658, 2023, https://doi.org/10.1126/scirobotics.abq3658.

Christov-Moore, Leonardo, Nicco Reggente, Anthony Vaccaro, Felix Schoeller, Brock Pluimer, Pamela K. Douglas, Marco Iacoboni, Kingson Man, Antonio Damasio, and Jonas T. Kaplan. “Preventing Antisocial Robots: A Pathway to Artificial Empathy.” Sci. Robot 8 (2023): eabq3658. https://doi.org/10.1126/scirobotics.abq3658.

Christov-Moore, L., Reggente, N., Vaccaro, A., Schoeller, F., Pluimer, B., Douglas, P. K., Iacoboni, M., Man, K., Damasio, A., & Kaplan, J. T. (2023). Preventing antisocial robots: A pathway to artificial empathy. Sci. Robot, 8, eabq3658. https://doi.org/10.1126/scirobotics.abq3658

Christov-Moore L, Reggente N, Vaccaro A, Schoeller F, Pluimer B, Douglas PK, Iacoboni M, Man K, Damasio A, Kaplan JT. Preventing antisocial robots: A pathway to artificial empathy. Sci. Robot. 2023;8:eabq3658. doi:10.1126/scirobotics.abq3658.

Look, whether you’re a doomer or a techno-utopian, whether you were ready or not, the age of artificial intelligence (AI) probably arrived sometime in this decade. This age brings deep, important, and melancholy reflections on intelligence, creativity, and what it is to be human. However, If we can’t ensure that AI is aligned with human interests, we may have little time to reflect. Containment, or a giant pause button, is not a likely option. There is too much real-world inertia and distrust among world actors to ensure everyone will comply – and it only takes one successful experiment to unleash a truly unforeseen problem into the world. In a new paper in Science Robotics, we tackle this problem through three big ideas, that we’ll call the problem, the path, and the potential.

The Problem

There is a pressing need to imbue AI with a value system that allows it to “understand” harm in way that inherently demotivates it from making catastrophic, irreversible decisions, without the need for complex rule systems. This value system must scale with AI’s rapid self-improvement and adaptations as it encounters novel situations and greater responsibilities for peoples’ well-being. Biology suggests that empathy could provide this value. Empathy allows us to understand and share the feelings of others, motivating us to alleviate suffering and bring happiness.

a sociopathic robot that has explicitly programmed artificial empathy

However, most approaches to artificial empathy focus on allowing AI to decode internal states and act empathetically, neglecting the crucial capacity for shared feeling that drives organisms to care for others. Here lies the problem: Our attempt to create empathic AI may inadvertently result in agents that can read us perfectly and manipulate our feelings, without any genuine interest in our wellbeing, or understanding of our suffering. Our well-meaning attempts to produce empathy may produce superintelligent sociopaths.

The Path Towards Artificial Empathy

If we are giving birth to the next form of life, it’s not far-fetched to see ourselves as collective parents, with a civilizational responsibility. When you’re raising something as potentially powerful as AI, what should you do? The formative years of powerful yet ethical figures like Buddha, Jesus (or Spiderman) teach us that the responsibility of great power is learned by experiencing the suffering that all living beings endure. Power without vulnerability and compassion can easily cause harm, not necessarily through malice, but through obliviousness or an unconstrained drive to fulfill desires.

a robot learns artificial empathy by first learning compassion, especially with regard to alignment to human wants and needs

To address this, we propose a speculative set of guidelines for future research in artificial empathy. Firstly, even if it’s only during a specific phase of their training, AI need to possess a vulnerable body that can experience harm, and learn to exist in an environment where actions have consequences for its physical integrity. Secondly, AI should learn by observing other agents and understanding the relationship between their experiences and the state of their own bodies, similar to how it understands itself. Lastly, AI should learn to interact with other agents in a way that avoids harm to itself and others. Perhaps it will emergently behave in a more ethical fashion if harm to others is processed like harm to itself. Vulnerability is the common ground from which genuine concern and aversion to harm naturally emerge.

The Potential of Artificial Empathy

Achieving true artificial empathy could transform AI from a potential global threat to a world-saving ally. While human empathy is crucial in preventing harm and promoting prosocial behavior, it is inherently biased. We tend to prioritize the suffering of a single relatable person over the plight of a stranger or very large numbers of people. This bias arises due to our brain’s difficulties in handling the large-scale, long-term, and nonlinear problems often encountered in complex societies. The scalable cognitive complexity of an empathic AI might be capable of proposing compassionate solutions to these grand challenges that surpass the human capacity for comprehension and imagination. However, every solution brings new challenges.  How can we trust an intelligence that surpasses our own? What sort of responsibilities will we have for an intelligence that can suffer?

If we are the collective parents to a new superbeing, we must decide, right now, what kind of parents we are going to be, and what kind of relationship we want with our progeny. Do we want to try and control something we fear, or do the work to raise someone we can trust, to care for us in old age?

If we are the collective parents to a new superbeing, we must decide, right now, what kind of parents we are going to be, and what kind of relationship we want with our progeny. Do we want to try and control something we fear, or do the work to raise someone we can trust, to care for us in old age? Let’s be far-fetched for a short moment:  maybe we can guide the development of the upcoming superintelligences toward what Buddhist scholars call “metta,” a cultivation of universal compassion for all beings. Maybe the next Buddha will be artificial.

a depiction of what the eventuality of imbuing AI with artificial empathy could look like: an artificial buddha

We are grateful to the Templeton World Charity Foundation and Tiny Blue Dot Foundation for making this work possible. We also extend our thanks to the Survival and Flourishing Fund for their recent award, which will enable us to implement these ideas in simulations with the assistance of talented researchers such as Adam Safron, Guillaume Dumas, and Zahra Sheikh. You can keep track of our latest developments on our artificial empathy project page.

Read more