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Preventing antisocial robots: A pathway to
artificial empathy
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Given the accelerating powers of artificial intelligence (AI), we must equip artificial agents and robots with
empathy to prevent harmful and irreversible decisions. Current approaches to artificial empathy focus on its
cognitive or performative processes, overlooking affect, and thus promote sociopathic behaviors. Artificially
vulnerable, fully empathic AI is necessary to prevent sociopathic robots and protect human welfare.
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ALIGNMENT, FEELING, AND EMPATHY
IN AI
Artificial intelligence (AI) suggests products
for us to buy; organizes media; drives our
planes, trains, and automobiles; diagnoses
disease; prices insurance; answers to con-
sumers; cares for seniors; provides therapy;
and increasingly dominates manufacturing,
warfare, and the stockmarket. This is occur-
ring with increasing speed (1). The behav-
iors of these artificial systems do not
always conform to human expectations or
judgments. AI’s ability to find counterintu-
itive solutions may lead to disastrous loop-
holes. AI may not be able to model the
effects and ramifications of its actions (2),
the “frame problem.” It is frequently diffi-
cult to discern how AI is “solving” a
problem, and the difficulty of communicat-
ing solutions intuitively to humans (ex-
plainable AI, XAI) grows with the scale
and complexity of the problems in question
(3).

AI should optimally have goals and be-
haviors aligned with those of its creators
(4, 5). Contemporary researchers studying
the alignment problem highlight the need
to represent values like harm and well-
being (also known as value specification)
and to avoid oversized side effects and neg-
ative incentives (also known as error toler-
ance) (2). However, technical solutions are
currently scarce (2, 5).

AI behavior toward humans is addressed
by examining real and simulated dilemmas
(as in the case of self-driving car accidents
or operator safety in automated production
chains) and crowd-sourced solutions to
ethical dilemmas (as in MIT’s Moral
Machine project) and by combining deci-
sions among different ethically weighted
AI “experts" (2). Behavior-based robotics
has made strides in optimizing artificial de-
cision-making via iterative interaction with
real environments, although it crucially
does not always regard models of internal
states. The perceived need for empathy in
AI has spawned the field of artificial
empathy, the ability of artificial agents to
predict a person’s internal state or reactions
from observable data. Existing approaches
to artificial empathy largely focus on decod-
ing humans’ cognitive and affective states
and fostering the appearance of empathy
and evoking it in users.

These approaches, however, may fail to
confer empathy’s prosocial function (6, 7).
Empathic concern likely arises from the in-
teraction between cognitive empathy, by
which we model other agents and make in-
ferences about their internal states and
future behavior, and affective empathy, by
which we share in the simulated internal
states of others (8). The vicarious feelings
afforded by affective empathy compel us to
act, to remove ourselves, or to ameliorate
the feelings of others (9, 10). In order for

artificial systems to include this key aspect
of empathy, it may be necessary to create a
proxy for feelings such as suffering,
modeled as a homeostatic error signal re-
sulting from falling short of expectations
related to self-maintenance. As we will
explain, proxies for this affective, felt
empathy may necessitate vulnerability, re-
quiring a real or simulated body (11).

Without proxies for feeling, predicated
on personal vulnerability, current cogni-
tive/performative approaches to artificial
empathy alone will produce AI that primar-
ily predicts behavior, decodes human emo-
tions, and displays appropriate emotional
responses. Such an AI agent could effective-
ly be considered sociopathic: It knows how
to predict and manipulate the emotions of
others without any empathic motivation of
its own to constrain its behavior and to
avoid harm and suffering in others. This po-
tentially poses a civilization-level risk.

We use “sociopathy” to describe a ten-
dency for antisocial behavior resulting
from an impairment of affective empathy.
A sociopath may have a set of internal
rules for their behavior, but those rules typ-
ically do not align with the norms of their
society, even if they are adept at appearing
otherwise (12). Impaired empathy and soci-
opathic, antisocial behavior can be acquired
after damage to brain regions, such as the
orbitofrontal cortex, that govern the ability
to incorporate homeostatic signals into de-
cision-making (13, 14).

Our position, informed by a neuroscien-
tific perspective, is that vulnerability,
coupled with an ability to have an internal
representation of bodily harm and an aver-
sion to harming, is a prerequisite for the de-
velopment of artificial proxies for affective
empathy and moral behavior. A vulnerable
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agent’s evolved drive to maintain itself and
avoid harm can powerfully motivate it to
value the same in others. In this endeavor,
the “feeling machine” concept of Man and
Damasio (15) may be of aid:
“We propose two provisional rules for a

well-behaved robot: (1) feel good; (2) feel
empathy… Actions that harm others will
be felt as if harm occurred to the self,
whereas actions that improve the well-
being of others will benefit the self.”

Perhaps to develop a proxy for empathic
concern, AI must first have a proxy for feel-
ings (which we operationalize here as the in-
tegration of homeostatic fitness over
multiple time scales) represented within
the AI model, an approximation of subjec-
tivity. This requires that the AI agents have a
vulnerable body that is able to provide ho-
meostatic signals (15). Input relating to
physical vulnerability should be incorporat-
ed into reinforcement via sensorimotor and
interoceptive modules’ interaction with the
environment. If empathic concern depends
on the presence of a vulnerable body, real or
virtual, then the relevance of robotics for the
ethical alignment of AI is clear.

Physical bodies and environments may
provide the best training, but simulated al-
ternatives may be sufficient provided that
the body and the environment are opti-
mized to the intended applications. Here,
vulnerability is a property of the machine,
whether recognized by the machine or not.
What is learned is that its actions can affect
the interoceptive inputs corresponding to
higher or lower integrity states and that
the machine can improve its ability to
manage its vulnerability.

Ongoing work from Man et al. (16) is
fruitfully applying homeostasis and vulner-
ability to artificial systems. In a simulation
of an artificial agent trained to successfully
label, for example, images of hand-drawn
digits (the Modified National Institute of
Standards and Technology database), they
incorporated vulnerability (and hence, a
link between model states, behavior, and
subsequent states of the model) by linking
different label sets to increases or decreases
of an internal parameter, the learning rate.
The agent periodically decided to “ingest”
a digit based on its feeling proxy about the
image—a counterfactual assessment of how
it would have done in the remembered past
using the new learning rate. They further-
more introduced a dynamically changing
environment (a frequent confound for
learning algorithms, which often struggle

with novel datasets where grounding as-
sumptions for optimization may no longer
be valid, such as changing consumer prefer-
ences or volatile market pressures) via peri-
odic “concept shifts” in which the
inhibitory/excitatory values of label subsets
were swapped. Under this paradigm, the
vulnerable, homeostatic algorithm outper-
formed both stable and random learning
rate regulation schemes, particularly in vo-
latile/calm alternating environments or sea-
sonally fluctuating ones.

Designing a system that is both intelli-
gent and benevolent is not a trivial
problem. Computational analogs to vicari-
ous feelings may be a useful mechanism in
this endeavor (7, 15). Approximating the
homeostatic advantage afforded by feeling
may also allow for more intelligent, creative,
and adaptive AIs by imbuing them with
stakes, values, and drives related to general
homeostasis (15, 16). It may be necessary to
incorporate affective processes into com-
puting systems if these are to coexist with
humans while functioning as optimal deci-
sion-makers (17).

Vulnerable AI could develop analogs to
feelings as a mechanism for representing
the status of their needs by training to main-
tain environmentally dependent variables
in a narrow but shifting viability window
to survive (homeostasis) and to maintain a
representation of these variables’ homeo-
static values even when they are not
present (18), much like human feelings.
Vulnerability and homeostasis in machines
may provide a minimal, nonsubjective
common ground between themselves and
living beings, based on a mutual homeostat-
ic imperative to maintain optimal condi-
tions for survival. Approximations of
empathic concern may emerge from ho-
meostatic machines generalizing their own
maintenance of self-integrity to the
modeled efforts of others to do the same.
This could serve, without the need for a
top-down rule-based artificial ethics, as a
flexible and adaptive but persistent deter-
rent against harmful behavior during deci-
sion-making and optimization.

A NEUROSCIENCE APPROACH TO THE
ALIGNMENT PROBLEM
It is beyond the scope of this manuscript to
attempt an exhaustivemanual for construct-
ing an intrinsically aligned AI within a vul-
nerable robotic body. Rather, we posit that
the affective aspect of empathy necessary

for harm aversion will require vulnerability
within a real or simulated body. According-
ly, we propose a set of guideposts to aid
other researchers in developing “AI curric-
ula” (2) before large-scale implementation:
(i) a rudimentary homeostatic drive to
maintain integrity arising from sensorimo-
tor and interoceptive sensing in a real or
simulated body, and a third-person repre-
sentation, within the AI model, of the AI
within the environment (15); (ii) predictive
models to infer the hidden states driving in-
tegrity-maintaining behavior of other
agents in the environment; (iii) the
mapping of these modeled internal states
to the AI, allowing it to share the internal
states of other agents via analogous repre-
sentation; and (iv) the cognitive complexity
necessary to simulate and recall persistent,
predictive models of environments and
agents along multiple time scales. This
could be viewed as a special case of agent-
based modeling, where each agent models
the world and other vulnerable agents
while modeling and regulating itself. This
allows for an agent that leverages a relatively
simple heuristic (rather than a fixed set of
rules) to dynamically maintain itself
within a changing environment.

A vulnerable AI could be trained to dy-
namically maintain homeostasis within
multiple environments, aided by (i) equiva-
lents of positively and negatively valenced
affect linked to homeostatic signals reflect-
ing its current and anticipated welfare and
(ii) an internal, third-person representation
of the body that is itself valenced (15, 19). In
the first stage (stage 1), the AI agent would,
for example, navigate an environment with
obstacles that are harmful, in search of
rewards that are beneficial (Fig. 1), and op-
timize for maximal integrity over multiple
time scales in an unsupervised fashion.

In stage 2, the AI agent must develop ac-
curate predictive models of the hidden ho-
meostatic states of other agents navigating
stage 1, optimizing to decrease the disparity
between the inferred and actual internal
states of the other agents (Fig. 1). This
problem may be amenable to a Bayesian ap-
proach, in which the agents’ external behav-
ior and evinced affect constitute the
“evidence,” whereas the agents’ physical in-
tegrity constitutes the “hidden variables,” a
calculation driven by “prior beliefs” that
could be tuned by the designer and in-
formed by the relationship between the
agent’s integrity, behavior, and simulated
effect (20, 21).
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One important determinant of the con-
fidence placed in models of interpersonal
exchange is the degree to which the agent
can use itself as a model of the other (20,
21). Humans’ empathic “mapping” of
others’ welfare is aided by the visible simi-
larity between the appearance and the kine-
matics of the agent with which one interacts

or about whom one is reasoning. Although
homeostatic states of other robots may be
transmissible via any number of devices, it
may be necessary for robots to train on the
visible markers of feeling states in humans,
and this task (as well as that of decoding and
communicating with humans) may be

facilitated by humanoid bodies and emo-
tional expressions.

In stage 3, perceived/inferred bodily and
affective states of others must be mapped to
the AI’s representation of its body. The AI
agent can then optimize its affective state/
welfare and that of others around it simulta-
neously. This requires the ability to sustain

Fig. 1. Developing artificial proxies for homeostasis, feeling, and affective empathy. (A) The agent maintains its integrity within an environment by seeking rewards
and avoiding harmful obstacles via predictive models of future states and an approximation of internal and displayed affect. (B) The agent must then leverage these
models to decode and predict others’ behavior and internal affective states.

Fig. 2. Developing an artificial proxy for empathically constrained behavior. The situated, vulnerable agent uses its proxies for empathy to encourage behavior that
maximizes its own welfare and that of other agents.C
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multiple models of other agents and pre-
serve the integrity of its own internal
model while giving similar but variable
weight to others’ inferred feelings (Fig. 2).
Within iterative reinforcement schemes,
this would require a cost function applied
to a simulation of future states that inte-
grates the weighted, inferred integrity of
surrounding agents (as described in stage
2), along with that of the AI agent, thus fa-
voring outcomes that maximize all consid-
ered agents’ welfare simultaneously. In
making a decision, the agent thus takes
into account the consequences for counter-
factual (past) and future outcomes, for all
involved. The inclusion of others’ simulated
integrity in its own reinforcement schema
thus introduces a proxy for empath-
ic concern.

At every stage of training, the AI agent
must consider multiple time scales, such
that considerations for their and others’
welfare are present in decision-making
whether they are absent or the subject of hy-
pothetical future decisions. Contemporary
active inference approaches integrate
current states with past performance and
future predictions to simulate feeling (19).
The variable weight given to each time
scale can also be optimized. AI charged
with resource allocation or irrigation may
need to give weight to longer time scales
than a firefighter or bodyguard AI. Other-
wise, the AI may revert to optimizing for
local minima at shorter time scales, posi-
tioning itself to avoid desirable difficulties,
such as grueling workouts an athlete
endures for the promise of prestige, that
may be present at any given decision
point (22).

LEVERAGING AI’S SCALABLE
COMPUTATIONAL POWER TO SURPASS
THE LIMITATIONS OF HUMAN EMPATHY
The ultimate goal of creating empathic AI is
to reduce the harm its decisions may cause
to people. However, it could be argued that
proximate feelings and empathy are not the
way to maximize harm reduction. Affective
empathy can lead to biases toward particu-
lar individuals or groups that circumvent
what would be overall most fair or just
(23). As Paul Bloom puts it, “Empathy is
biased; we are more prone to feel empathy
for attractive people and for those who
look like us or share our ethnic or national
background. And empathy is narrow; it
connects us to particular individuals, real

or imagined, but is insensitive to numerical
differences and statistical data” (24). An AI
system using feeling to guide its decision-
making may prioritize the well-being of in-
dividuals over the well-being of the masses,
much as humans do (24). Furthermore, the
experience of empathy can induce negative
affect, which can cause unneeded suffering
and potentially burn out the willingness to
use it.

The biases and heuristics inherent to
human empathy arise in response to the in-
formational limitations of the human brain
and evolutionary pressures to conserve
energy. We have difficulty maintaining
dynamic models of more than a few agents
at once, particularly in interactions with
each other and the environment, due pre-
dominantly to neocortex size (25). The aug-
mentable cognitive complexity of a
sophisticated AI system could be brought
to bear here. The scalable ability to consider
future affective rewards in the present might
allow for optimally compassionate solutions
to large-scale problems while simultane-
ously avoiding equivalents to empathic
“burnout.” An intelligence that could main-
tain and run simulations of hundreds or
thousands of agents simultaneously, cou-
pling harm aversion with tools to manage
the dimensionality of the problem, might
be capable of empathically informed behav-
ior implemented on a scale beyond individ-
ual or collective human capability.

CONCLUSIONS, OUTSTANDING
QUESTIONS, AND FUTURE DIRECTIONS
The approach we outline here drives AI de-
cision-making through a universal principle
from which feeling, harm aversion, and
empathy emerge: the drive to preserve phys-
ical integrity. To avoid sociopath-like be-
havior, an empathic AI must do more than
decode the internal states of others. It must
plan and behave as if harm and benefit to
others are occurring to itself. Doing so re-
quires proxies for affective empathy, neces-
sitating vulnerability and a homeostatic
imperative (7, 9).

We suggest that we are unlikely to
achieve prosocial decision-making by a
rule-based approach only. The first chal-
lenge to a rule-based approach is that there
exists no universally agreed-upon set of
moral rules in propositional form, a
problem for which moral philosophy is
still seeking a resolution. Furthermore, a
rule-based approach may be unable to

respond dynamically to novel ethical dilem-
mas without engaging a never-ending
branching of context-specific exceptions
and qualifications. A recent review on align-
ment in AI concluded that “When it comes
to ethical decision-making in AI systems,
the AI research community largely agrees
that generalized frameworks are preferred
over ad-hoc rules.” (2). Many approaches
have been proposed to overcome this
issue, including a focus on advancement
in specifying goals, adjusting incentives to
optimize them, and human oversight (2).
Multiple avenues of research are underway
to address the alignment of AI actions
with human concerns. However, these ap-
proaches still acknowledge the need for a
stage in generalized AI development that in-
tegrates a global value related to human
flourishing that can mitigate drastic or
harmful solutions (2, 5). The homeostatic
drive might well provide a universal
“value” to assist with AI alignment.

Aside from empathy’s obvious prosocial
benefits, empathy allows for rich inferences
about the possible intentions and future be-
haviors of others (6, 8). The capacity for
quick, verification-minimal information
transfer extends individual agency and
knowledge and facilitates group behavior.
Thus, incorporating empathy may not
only result in amore ethical, nonsociopathic
AI but may also make for a more intelligent,
sophisticated, and cooperative AI, of partic-
ular importance in a world in which AI
agents will increasingly interact with and
exist among other agents as well as humans.

In addition, having a model of agent in-
tegrity in the environment should lead to
faster training. It has been shown that
mapping to prelearned representations sub-
stantially improves performance (26).
Because understanding agent integrity re-
quires an understanding of its environment,
a mapping of the environment during the
empathy training phase could be used to
speed up training in subsequent phases.
This would improve on the random initial-
ization many reinforcement learning
models use to begin their training, which
are known to converge slowly when
rewards are sparse (27).

Our proposed approach addresses
crucial problems in AI alignment but faces
potential obstacles. Even a compassionate
AI, invested in its survival and that of
others, might still opt toward the harmful
solutions that we are trying to avoid out of
perceived necessity (28). Containment of AI
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may well be more feasible than engendering
spontaneous ethical behavior. There is a
possibility that vulnerable, empathic AI
may evoke in us moral responsibilities
toward it that are incompatible with the per-
ilous roles we may need it to fill.

The design of optimally prosocial solu-
tions to complex, ethically fraught problems
is an additional issue. A feeling AI may ap-
proximate an equivalent to paralyzing per-
sonal distress in the face of sufficiently
grave short-term harm, lacking the com-
plexity tomodel the long-term, positive out-
comes of a decision. A sufficiently complex,
ethical AI may even propose solutions to
civilizational problems that appear trou-
bling or unacceptable to human eyes. How
do we trust intelligence so far beyond our
own? Can an AI, which can convincingly
evince empathy in its decisions and not
just in its appearance, better establish trust
with human agents and society at large?

Current approaches to artificial empathy
emphasize its cognitive aspect and neglect
effect, thus favoring sociopathic behaviors.
Proxies for affective empathy necessitate
proxies for feeling, which imply vulnerabil-
ity. We propose a path from vulnerable AI
to an approximation of affective empathy.
The scalable cognitive complexity of AI
may allow it to surpass the limits of
human empathy and provide a powerful
ally in human affairs. Vulnerability and a
homeostatic imperative may provide a
common ground between living and AIs
from which a fruitful alliance could emerge.
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