Category: Review

Aesthetic chills mitigate maladaptive cognition in depression-- an important finding showcasing the power of positive affect promotion.

Aesthetic chills mitigate maladaptive cognition in depression

E4001, Manuscript, Proceedings, Review

Get The Article

Cite This Work

  • APA
  • MLA
  • Bibtex

Schoeller, F., Jain, A., Adrien, V., Maes, P., & Reggente, N. (2024). Aesthetic chills mitigate maladaptive cognition in depression. BMC Psychiatry, 24(1). https://doi.org/10.1186/s12888-023-05476-3

“Aesthetic Chills Mitigate Maladaptive Cognition in Depression.” BMC Psychiatry, vol. 24, no. 1, Jan. 2024, https://doi.org/10.1186/s12888-023-05476-3.

@article{Schoeller_Jain_Adrien_Maes_Reggente_2024c, title={Aesthetic chills mitigate maladaptive cognition in depression}, volume={24}, url={https://doi.org/10.1186/s12888-023-05476-3}, DOI={10.1186/s12888-023-05476-3}, number={1}, journal={BMC Psychiatry}, author={Schoeller, Félix and Jain, Abhinandan and Adrien, Vladimir and Maes, Pattie and Reggente, Nicco}, year={2024}, month=jan }

Using peak positive affect (aesthetic chills) to help with depression

In our recent collaboration with Pattie Maes’s Fluid Interfaces group at MIT Media Lab and Dr. Vladimir Adrien from Assistance Publique Hôpitaux de Paris (APHP) in France, we investigated the potential for aesthetic chills to serve as an innovative intervention for major depressive disorder. This effort is a considerable advancement towards the notion of promoting positive affect in depression, which stands in contrast to standard care which is mostly focused on mitigating negative affect.

Instead of focusing on how to help individuals with depression not feel so bad, this work suggests the potential of helping those individuals by presenting them with content so they can feel good.

Aesthetic chills are characterized by sensations like shivers, goosebumps, and tingling that arise in response to emotional experiences with art, music, or nature. We hypothesized that by eliciting chills through validated multimedia stimuli, we could positively influence the core beliefs and self-schemas of individuals with depression. Across two studies with 96 participants diagnosed with major depressive disorder, we engaged participants in randomized sessions involving chill-inducing and neutral control stimuli across visual, auditory, and written modalities. Our results demonstrated that aesthetic chills induced a notable increase in self-acceptance among depressed participants. Chill-inducing stimuli appeared to facilitate positive emotional breakthroughs and shifts in self-perception that could address cognitive distortions related to depression. The data further suggest that aesthetic chills may engage reward-related neural pathways similarly to interventions like psychedelic-assisted therapy.

Individuals with major depressive disorder reported more emotional breakthroughs in their maladaptive cognition (e.g., lack of self-acceptance) when they reported getting chills compared to individuals who viewed the same content, but didn’t get chills. This also scaled as a function of the intensity of those chills.

While preliminary, these findings bring much-needed attention to the potential for aesthetic chills to positively influence core beliefs and schemas related to the self and one’s place in the world. For individuals with depression stemming from early adverse experiences, chill-inducing stimuli could foster emotional catharsis and lasting change to maladaptive self-narratives developed as coping mechanisms. Our research provides initial evidence that the biological processes involved in aesthetic chills can be harnessed for therapeutic ends. Chill-based interventions offer a promising avenue for large-scale study given the ease of dissemination through multimedia experiences.

Looking forward, further research should explore the neurophysiological mechanisms of aesthetic chills and biomarkers that may predict individual responses. Larger clinical trials are needed to investigate optimal protocols and delivery methods for chill-based therapy. We believe aesthetic chills represent an innovative non-pharmacological intervention that warrants greater attention from the psychiatry, psychology, and human-computer interaction communities.

shift + ⏎ to add a ne

Read more
interoceptive technologies for clinical use cases

Interoceptive Technologies for Psychiatric Interventions: A Comprehensive Review

E4001, Manuscript, Proceedings, Review

Cite This Work

  • APA
  • MLA
  • Bibtex

Schoeller, F., Horowitz, A. H., Jain, A., Maes, P., Reggente, N., Christov-Moore, L., . . . Friston, K. J. (2024). Interoceptive technologies for psychiatric interventions: From diagnosis to clinical applications. Neuroscience & Biobehavioral Reviews, 156, 105478. https://doi.org/10.1016/j.neubiorev.2023.105478

Schoeller, Félix, Adam Haar Horowitz, et al. “Interoceptive Technologies for Psychiatric Interventions: From Diagnosis to Clinical Applications.” Neuroscience & Biobehavioral Reviews, vol. 156, Jan. 2024, p. 105478. https://doi.org/10.1016/j.neubiorev.2023.105478.

@article{Schoeller_Horowitz_Jain_Maes_Reggente_Christov-Moore_Pezzulo_Barca_Allen_Salomon_et al._2024, title={Interoceptive technologies for psychiatric interventions: From diagnosis to clinical applications}, volume={156}, url={https://doi.org/10.1016/j.neubiorev.2023.105478}, DOI={10.1016/j.neubiorev.2023.105478}, journal={Neuroscience & Biobehavioral Reviews}, author={Schoeller, Félix and Horowitz, Adam Haar and Jain, Abhinandan and Maes, Pattie and Reggente, Nicco and Christov-Moore, Leonardo and Pezzulo, Giovanni and Barca, Laura and Allen, Micah and Salomon, Roy and Miller, Mark and Di Lernia, Daniele and Riva, Giuseppe and Tsakiris, Manos and Chalah, Moussa A. and Klein, Arno and Zhang, Ben and Garcia, Teresa and Pollack, Ursula and Trousselard, Marion and Verdonk, Charles and Dumas, Guillaume and Adrien, Vladimir and Friston, Karl J.}, year={2024}, month=jan, pages={105478} }

What Is Interoception?

Interoception refers to our awareness of internal bodily signals like heartbeat, breathing, and digestion. While often overlooked, emerging research is revealing interoception as a fundamental process underlying emotion, cognition, and mental health. A new multidisciplinary review led by IACS senior research scientist Felix Schoeller and published in Neuroscience & Biobehavioral Reviews explores the profound significance of interoception and its potential applications in psychiatric diagnosis and treatment.

Directly manipulating interoceptive signals in experiments has proven challenging due to the highly invasive techniques currently used, like esophageal balloon distension. There is also a lack of standardized, validated measures of interoceptive function across research disciplines as “the lack of correlation across unimodal tests underscores the need for multimodal approaches that assess integration of interoceptive information across bodily systems.” Drawing from fields like psychology, physiology, psychiatry, engineering, and neuroscience, the article provides a detailed account of the neurobiology of interoception, describing it as a hierarchical predictive processing system in the brain, and emphasizing the key role of dysfunctional interoceptive processing in disorders like anxiety, depression, and eating disorders.

What are Interoceptive Technologies?

The review also explores in details existing paradigms for modulating interoception, like interoceptive conditioning. This involves pairing internal bodily sensations with aversive stimuli to reshape emotional and physiological responses through a form of classical conditioning. The authors discuss clinical applications of these approaches, such as interoceptive exposure therapy for anxiety disorders. They also propose a new classification system for interoceptive technologies, dividing them into three categories: artificial sensations that induce novel bodily perceptions, interoceptive illusions that manipulate the precision of predictions, and emotional augmentation systems that facilitate beneficial changes in beliefs or behaviors.

interoceptive technologies examples

Figure 1. Overview of interoceptive technologies: A) the breath-holding test as an artificial sensation, whereby some bodily signal is directly manipulated, B) false heart feedback as an interoceptive illusion, where contextual cues generate a perceptual drift (here the illusion that the heart beats faster at a faster-than-expected rate), C) the therapeutic alliance as entrainment, where the patient’s heart rate slows down as the therapist’s is increasing, leading both to tend towards some average value, D) augmented exposure therapy as emotional augmentation, similar to B but with additional exteroceptive cues having personal significance to the individual (e.g. eliciting the trauma-related memory) favoring an emotional explanation for the interoceptive drift.

Such technologies could have powerful implications. Artificially inducing bodily sensations could help diagnose psychiatric conditions by testing patients’ susceptibility to developing skewed predictions about their internal state. More advanced emotional augmentation systems could precisely modulate predictive processes to reshape maladaptive cognitions and behaviors. While acknowledging that much remains unknown, the review shows the vast potential for interoceptive interventions to improve diagnosis and treatment of mental health disorders. Developing standardized measures and new technologies to precisely manipulate interoceptive signaling may open transformative frontiers in biological psychiatry and psychology.

Read more
infant consciousness in the lab

New research sheds fresh light on mystery of infant consciousness

Manuscript, Proceedings, Review

Get The Article

  • Article PDF
  • Trends in Cognitive Science Article

Cite This Work

  • APA
  • MLA
  • Bibtex

Bayne, T., Frohlich, J., Cusack, R., Moser, J., & Naci, L. (2023). Consciousness in the cradle: on the emergence of infant experience. Trends in Cognitive Sciences.

Bayne, Tim, et al. “Consciousness in the cradle: on the emergence of infant experience.” Trends in Cognitive Sciences (2023).

@article{bayne2023consciousness, title={Consciousness in the cradle: on the emergence of infant experience}, author={Bayne, Tim and Frohlich, Joel and Cusack, Rhodri and Moser, Julia and Naci, Lorina}, journal={Trends in Cognitive Sciences}, year={2023}, publisher={Elsevier} }

New research sheds fresh light on mystery of infant consciousness

When does consciousness begin? There is evidence that some form of conscious experience is present by birth, and perhaps even in late pregnancy, an international team of researchers led by Tim Bayne of Monash University in Melbourne, Australia and Joel Frohlich of the University of Tuebingen in Germany and the US-based Institute for Advanced Consciousness Studies in Santa Monica, California has concluded in a new review manuscript. The findings, just published in the peer-reviewed journal ‘Trends in Cognitive Science’, have important clinical, ethical, and potentially legal implications, according to the authors.

In the study, entitled ‘Consciousness in the cradle: on the emergence of infant experience’, the researchers argue that, by birth, the infant’s developing brain is likely capable of conscious experiences. Although each of us was once a baby, infant consciousness remains mysterious, because infants cannot tell us what they think or feel, explains one of the two lead authors of the paper Dr. Tim Bayne, Professor of Philosophy at Monash University. 

“Nearly everyone who has held a newborn infant has wondered what, if anything, it is like to be a baby. But of course we cannot remember our infancy, and consciousness researchers have disagreed on whether consciousness arises ‘early’ (at birth or shortly after) or ‘late’ ­– by one year of age, or even much later.”

To provide a new perspective on when consciousness first emerges, the team reviewed recent advances in consciousness science. In adults, some markers from brain imaging have been found to reliably differentiate consciousness from its absence, and are increasingly applied in science and medicine. This is the first time that these advances, as translated to infants, have been reviewed in detail.

Co-author of the study, Dr. Lorina Naci, Associate Professor at Trinity College Dublin in Ireland, who leads the ‘Consciousness and Cognition Group’, explained: “Our findings suggest that newborns can integrate sensory and developing cognitive responses into coherent conscious experiences to understand the actions of others and plan their own responses.”

It is even possible that birth itself triggers the onset of consciousness. “Probably the first thing the newborn infant realizes is that the outside world is very unpredictable relative to the womb environment,” explained co-lead author and postdoctoral researcher  Dr. Joel Frohlich. “Things are constantly changing, and so the newborn must build a mental model of the world to adapt and predict things.” 

However, the authors don’t rule out the possibility that consciousness might already start some weeks beforehand.  “Julia Moser’s work shows that third-trimester fetuses appear to be capable of learning sequences of auditory beeps,” said Dr. Frohlich, referring to his co-author Dr. Moser at the University of Minnesota. “When an auditory tone deviates from a pattern established earlier in the experiment, the fetus shows this ‘surprise’ response in its magnetic brain activity. The neural activity shows a field deflection as if the fetus is saying ‘huh?’.”

The paper also sheds light into ‘what it is like’ to be a baby. We know that seeing is much more immature in babies than hearing, for example (see the image below for a theoretical depiction). Furthermore, this work suggests that, at any point in time, infants are aware of fewer items than adults, and can take longer to grasp what’s in front of them, but they can easily process more diverse information, such as sounds from other languages, than their older selves. 

infant consciousness differences in perception

“Infants can perceive many things which adults cannot, like the differences between vowel sounds in a foreign language,” explained Dr. Joel Frohlich. “By 10 months or so, we lose this ability as the brain decides these perceptual differences are no longer relevant and discards them.” 

Read more

Cognitive Science Below the Neck: Toward an Integrative Account of Consciousness in the Body

E4001, Proceedings, PSAI, Review
section-a8ead51
Get the Article

Cognitive Science Below the Neck: Toward an Integrative Account of Consciousness in the Body

PDF

Cognitive Science Below the Neck: Toward an Integrative Account of Consciousness in the Body

Article

Cite This Work

Christov‐Moore, L., Jinich‐Diamant, A., Safron, A., Lynch, C., & Reggente, N. (2023). Cognitive science below the neck: Toward an integrative account of consciousness in the body. Cognitive Science, 47(3). https://doi.org/10.1111/cogs.13264

Christov‐Moore, Leonardo, et al. “Cognitive Science below the Neck: Toward an Integrative Account of Consciousness in the Body.” Cognitive Science, vol. 47, no. 3, 2023, https://doi.org/10.1111/cogs.13264.

Christov‐Moore, Leonardo, Alex Jinich‐Diamant, Adam Safron, Caitlin Lynch, and Nicco Reggente. “Cognitive Science below the Neck: Toward an Integrative Account of Consciousness in the Body.” Cognitive Science 47, no. 3 (2023). https://doi.org/10.1111/cogs.13264.

Christov‐Moore, L. et al. (2023) “Cognitive science below the neck: Toward an integrative account of consciousness in the body,” Cognitive Science, 47(3). Available at: https://doi.org/10.1111/cogs.13264.

Christov‐Moore L, Jinich‐Diamant A, Safron A, Lynch C, Reggente N. Cognitive Science Below the Neck: Toward an Integrative Account of Consciousness in the Body. Cognitive Science. 2023 Mar;47(3).

 

Text Body

Cognitive Science Below the Neck: Toward an Integrative Account of Consciousness in the Body

Despite historic and recent evidence that our beliefs can have drastic effects on bodily function, we seem to lack a model of how this might work. We believe this is due in large part to a failure to consider that computational processes we attribute to cognition may be occurring below the neck, and to a lack of a language by which we could describe beliefs as something that can be instantiated within the body.

In a recent paper, we proposed that we expand the scope of cognitive science to include the body and develop a formal language to describe the relationship between cognitive and bodily systems. To do so, we propose to integrate the best parts of three contemporary accounts that deal with mind and body.

Firstly, parametrically deep allostasis (PDA), a two-level Bayesian inference model, can help us understand how affective valence (the positivity or negativity of a feeling) arises from our bodily experiences. At the surface level, the model uses sensory information to anticipate our homeostatic needs. At the deep level, it continuously tracks the fitness of the surface-level models, indexing fitness as affective valence. This model frames the role of our slow, deep feelings in statistical language that can allow us to possibly speak of beliefs in terms of signaling and computation in interoceptive systems.

Secondly, embodied predictive interoception coding (EPIC) provides a biologically plausible implementation of PDA. EPIC describes a predictive system in the central nervous system that takes inputs from the body via the interoceptive nervous system. It senses precision-weighted ascending homeostatic/metabolic and exteroceptive signals in highly laminated sensory "rich club" hubs and issues allostatic predictions that drive descending allostatic control signals. 

Finally, Carvalho and Damasio's functional/anatomical account of the interoceptive nervous system (INS) provides a crucial, holistic field of view that permits for unique forms of computation in systems below the neck. They frame the spatiotemporally diffuse properties of interoception and affect (described in PDA) as products of INS physiology, with a neurobiological framing that “matches up” well with the cortical field of view of the EPIC model.

 

https://i0.wp.com/advancedconsciousness.org/wp-content/uploads/2023/04/ChristovMoore_beliefs_descending_from_the_brain_and_being_refle_d62ebb55-61aa-46d1-ac3d-b2bf50c6e758-1.jpg?resize=770%2C800&ssl=1

 

Combined, these complementary accounts can expand the scope of cognitive science below the neck, using a formal language that allows us to speak of beliefs in terms of signaling that can be studied within CNS/INS interactions. Beliefs can be enacted in bodily function and influence declarative awareness, while “beliefs” in bodily signaling can emerge to impact conscious thought. This approach can deepen our understanding of belief, ritual, and set/setting in research and clinical outcomes, with potential implications for treating psychopathology and effecting therapeutic change. Novel methodological developments will be needed to trace signaling in the transition from CNS to INS as beliefs translate into bodily change, and vice versa. A field of view that encompasses cortical and interoceptive anatomy and computational processes, along with a formal language for belief transmission and enactment, can transform mind-body mysteries into novel science and therapy.

Read more
A diagram showing how ultrasound for neuromodulation works

Current State of Potential Mechanisms Supporting Low-Intensity Focused Ultrasound for Neuromodulation

Proceedings, Protocol-003, Review
section-0660f8f

Published in Frontiers in Human Neuroscience in 2022, this review intended to answer how ultrasound for neuromodulation works

Our review titled, Current state of potential mechanisms supporting low intensity focused ultrasound for neuromodulation, attempts to address the following questions: 1) How can we alter the amount of mechanical energy or other properties of the mechanical energy using the sonication parameters available with each device, 2) How are neuronal tissue affected by mechanical energy, and 3) How do those sonication parameters change the type of neuromodulation (i.e., excitatory or suppressive)? We reviewed the theoretical mechanisms of action for neuromodulation and the empirical findings tracking all the sonication parameters used to elucidate the possible link between the proposed mechanisms of action and the choice of sonication parameters. This is still an emerging field, but a tabulation of the empirical findings and theoretical models is needed to help clinicians and researchers choose the best paradigm to use.

Get the Article

Frontiers in Human Neuroscience: Brain Imaging and Stimulation Open Source Article

Current State of Potential Mechanisms Supporting Low-Intensity Focused Ultrasound for Neuromodulation PDF

Cite This Work

DellItalia, John, et al. “Current state of potential mechanisms supporting low intensity focused ultrasound for neuromodulation.” Frontiers in Human Neuroscience: 228.

DellItalia, J., Sanguinetti, J. L., Monti, M. M., Bystritsky, A., & Reggente, N. Current state of potential mechanisms supporting low intensity focused ultrasound for neuromodulation. Frontiers in Human Neuroscience, 228.

DellItalia, John, Joseph L. Sanguinetti, Martin M. Monti, Alexander Bystritsky, and Nicco Reggente. “Current state of potential mechanisms supporting low intensity focused ultrasound for neuromodulation.” Frontiers in Human Neuroscience: 228

DellItalia, J., Sanguinetti, J.L., Monti, M.M., Bystritsky, A. and Reggente, N., Current state of potential mechanisms supporting low intensity focused ultrasound for neuromodulation. Frontiers in Human Neuroscience, p.228.

DellItalia J, Sanguinetti JL, Monti MM, Bystritsky A, Reggente N. Current state of potential mechanisms supporting low intensity focused ultrasound for neuromodulation. Frontiers in Human Neuroscience.:228.

Science Without Jargon

Science should be accessible to everyone. However, dense jargon-filled articles can make it difficult for non-experts to engage with research. Making science accessible promotes scientific literacy and informed decision-making. In this post, we summarize our recent article for a lay audience.

 

section-2c7234d

How ultrasound for neuromodulation works

Non-invasive brain stimulation has been used to modulate the activity of neural tissue without the need for surgical procedures to implant devices or permanently alter the neural tissue. Non-invasive brain stimulation has been used for neuromodulation across empirical research and clinical practices using transcranial electrical stimulation and transcranial magnetic stimulation. These types of neural modulation use electric (i.e., transcranial electrical stimulation) or magnetic (i.e., transcranial magnetic stimulation) fields applied outside the skull to induce changes in the electrochemical activity underneath the device within and around neurons. These fields tend to affect larger areas and affect all the neural tissue that the fields pass through. Thus, this limits which brain regions can be targeted precisely or individually.

An alternative to the putative non-invasive brain stimulation is devices using ultrasound. Ultrasound has been used for decades by clinicians to image various parts of the body, but recently ultrasound devices have begun to be used for neuromodulation. Ultrasound doesn’t use electric or magnetic fields, rather it generates acoustic waves that are a mechanical force. This mechanical force can be focused on a precise area with only the maximal mechanical energy converging on millimeter-sized region. This allows for deeper and/or smaller brain regions to be targeted compared to transcranial electrical stimulation and transcranial magnetic stimulation. However, the different energy source compared to electric or magnetic fields requires a different understanding of how neuromodulation occurs. Without this understanding, effective uses of ultrasound in empirical research and clinical practices will be limited.

Ultrasound’s acoustic waves have the characteristic properties of wavelength, amplitude, and frequency. Wavelength is the distance between two peaks within the wave, the amplitude is the height of the wave, and frequency is the number of peaks in a second. Each of these properties affects the total amount of mechanical energy delivered by the ultrasound device and other sonication parameters. The total energy can be measured by either the average amount in a spatial region or the average amount delivered over time typically converted into the units of watts per centimeter squared. In addition to the intensity, the total energy delivered over time is affected by the duty cycle, which is the percentage of time the sonication occurs. The duty cycle also determines if a paradigm is pulsed or continuous. Pulsed paradigms are any duty cycle below 100 percent, which allows for breaks between the sonication, compared to a continuous application of ultrasound. The frequency of the ultrasound’s acoustic waves is related to the sonication parameters of center frequency and pulse repetition frequency. The center frequency is set by the device manufacturer, which is the frequency delivered by the device and this frequency is related to the spatial precision of the acoustic wave delivered. The pulse repetition frequency is the frequency of the acoustic wave delivered by the pulsed paradigm. The final commonly adjusted sonication parameter is sonication duration (i.e., total time of acoustic wave delivered).

The mechanical energy delivered by the ultrasound device has seven proposed mechanisms to affect the activity of groups of neurons. Neurons are connected and each neuron’s activity either helps to excite other neurons connected to it or suppresses the activity of the neurons connected to it. These signals involve both electrical and chemical signaling. Since ultrasound is mechanical, the mechanisms of action proposed describes: 1) effects of mechanical energy on the temperature., 2) how the neurons detect and transform that mechanical energy to electrical or chemical signaling (i.e., mechanosensitive ion channels), or 3) how mechanical energy interacts with the elasticity of neurons to change the electrical properties or structure of neurons (e.g., direct flexoelectricity, change of membrane conformational states, or sonoporation).

Ultrasound has been used for decades to destroy malignant tissue by using enough intensity to generate larger changes in temperature. These large changes in temperature are not seen in the intensity ranges used in non-invasive brain stimulation. Despite the lower intensity used, there is still a mechanical force acting on the neurons. Some neurons have specific mechanisms for detecting external mechanical forces. These are most well understood in our tactile sensations. When our hand presses against a surface, specialized neurons detect the mechanical force by getting stretched which allows for chemical and electrical signaling to occur. The amount and distribution of neurons with similar properties in the brain is an active area of research. In addition to these specialized neurons, the mechanical energy from ultrasound can change the electrical properties of neurons by distorting the shape. The specific configuration of the membrane allows for electrical signals (i.e., direct flexoelectricity) to be produced as the mechanical energy changes the alignment of the interior and exterior parts of the membrane. On top of these alignment changes, there are pressure changes which can also generate both chemical and electrical changes from the changes in membrane conformational states.

Additionally, the neuron’s membranes can have changes to their permeability called sonoporation allowing for electrical changes that can elicit the neuron to fire. This process was investigated how the ultrasound’s pulse repetition frequency, intensity, or duty cycle could produce excitatory or suppressive effects. The key sonication parameter that best predicted differences in neuronal activity was duty cycle. Higher duty cycles between 10% to 70%, typically excited neurons, while lower duty below 10% created suppressive effects. Unfortunately, this one parameter did not predict the suppressive findings well, but the excitatory findings were almost all exclusively found between 10% to 70% duty cycle.

While duty cycle was predictive of some results found in the literature, it left most of the results unexplained. More models and theories are needed to expand the understanding of the mechanisms of action. Hopefully, this review gives a basic knowledge base to clinicians and researchers to use in their treatments or experiments. As the understanding of the mechanisms of action expand, more nuanced treatments and experiments can be used.

section-b291281

Figures & Captions

Feel free to use these figures in your articles, blogs, and presentations. If you do, please cite this work.

Figure 1.

Low intensity focused ultrasound general principles. (A) A depiction of a typical LIFU experimental setup. A participant is seated (2) with an US device (5) firmly pressed against their head held in place by an arm (3). The US device is controlled by a computer system (4) and targeted using infrared system (1). (B) Depiction of the mechanical wave properties (amplitude, wavelength, and frequency) used in US stimulation. (C) Spatial intensities of the mechanical wave. (D) Temporal intensities of the mechanical wave. (E) Two exemplary pulsation schemes: pulsed (in yellow) and continuous (in teal). Both the pulsing schemes have a customizable sonication duration with inter stimulation interval with the DC parameter (i.e., the ratio of tone burst duration over pulse repetition period) determining the pulsing scheme.

https://i0.wp.com/advancedconsciousness.org/wp-content/uploads/2023/03/Current-State-of-Potential-Mechanisms-Supporting-Low-Intensity-Focused-Ultrasound-for-Neuromodulation-Figure-1.jpg?resize=500%2C700&ssl=1
section-9414ff9
https://i0.wp.com/advancedconsciousness.org/wp-content/uploads/2023/03/Current-State-of-Potential-Mechanisms-Supporting-Low-Intensity-Focused-Ultrasound-for-Neuromodulation-Figure-2.jpg?resize=550%2C700&ssl=1

Figure 2.

Proposed ultrasonic stimulation’s mechanisms for neuromodulation. Depicted in column 1 are six neuronal membranes (four with an ion channel [rows A,C,D,E] and two neuronal membranes [rows B,F] with polar lipid bilayer) and a neuron with the microtubules highlighted (row G). Depicted in column 2, these membranes have four types of electrophysiological-mechanical coupling during an action potential: change in membrane conformation state, thermodynamic waves, direct flexoelectricity, and opening of mechanosensitive ion channels (see Section above). Column 3 depicts these same four electrophysiological-mechanical coupling during US stimulation along with three other possible mechanisms of US’s neuromodulation: thermal modulation, sonoporation and cavitation, and microtubule resonance (see Section above).

section-c606dc9

Figure 3.

Neuronal intramembrane cavitation excitation model. Plaksin et al. (20142016) proposed the NICE model hypothesizing sonoporation (see Figure 2F) as US’s mechanism of neuromodulation. The US’s DC (see Figure 1E) determines the polarity of neuromodulation. A low DC (i.e., below 5%) during a stimulation’s off-periods will preferentially activate thalamic reticular neurons (TRN), thalamocortical neurons (TCN), and low-threshold spiking (LTS) interneurons via T-type voltage-gated calcium channels (see Section above for full description) producing an inhibitory effect. A high DC (i.e., over 20%) during the on-periods will preferentially activate regular spiking (RS) pyramidal cells and fast spiking (FS) interneurons while suppressing the LTS interneurons producing an overall excitatory effect. This excitatory effect is simulated using a basic network model of LTS, FS, and RS neurons connected with excitatory and inhibitory synapses and thalamic inputs. The network model predicts an optimum excitation of 70% DC.

https://i0.wp.com/advancedconsciousness.org/wp-content/uploads/2023/03/Current-State-of-Potential-Mechanisms-Supporting-Low-Intensity-Focused-Ultrasound-for-Neuromodulation-Figure-3.jpg?resize=550%2C650&ssl=1
section-cce1099
https://i0.wp.com/advancedconsciousness.org/wp-content/uploads/2023/03/Current-State-of-Potential-Mechanisms-Supporting-Low-Intensity-Focused-Ultrasound-for-Neuromodulation-Figure-4.jpg?resize=500%2C800&ssl=1

Figure 4.

Excitatory and suppressive empirical findings’ relationships to DC, PRF, ISPPA, fc, and SD. DC, PRF, ISPPA, fc, and SD are used as grouping factors for excitatory and suppressive findings. We used density plots for each study, but studies with multiple sonication parameters have each one plotted. In the top panel, high DC, above 10%, has the vast majority of the excitatory findings. While ow DC, less than 10%, contains the majority of the suppressive findings, there are still approximately 30% of the suppressive findings above 10% DC. The top panel is highlighted in red because DC is the one sonication parameter that has any distinction between excitatory and suppressive findings. In the four bottom panels, PRF, ISPPA, fc, and SD has no clear distinction between excitatory and suppressive findings.

Read more
neuroaesthetics

Frontiers Research Collection: Possible Applications of Neuroaesthetics To Normal and Pathological Behaviour

E4001, Review

 

Dr. Felix Schoeller is now a Topic Editor for the Frontiers Research Collection under the topic: Possible Applications of Neuroaesthetics To Normal and Pathological Behaviour

 

 

See The Research Collection
Text Body

Frontiers Research Collection: Possible Applications of Neuroaesthetics To Normal and Pathological Behaviour

The aim of this Research Topic is to clarify the role of aesthetic experiences in driving cognitive-emotional change in everyday life at an individual, interpersonal and group level. We are specifically interested in empirical studies of aesthetic emotions in relation to learning and psychopathology. Modern aesthetics — i.e., the science of what is sensed — was originally intended as an alternative to the philosophy of knowledge; in Baumgarten’s words: “the science of sensory knowledge directed toward beauty” (Baumgarten, 1750). In the past few decades, there has been a renewed interest in this relation between aesthetic emotion and knowledge acquisition. Recent evidence suggests that the perception of beauty may subtend the learning process -i.e., the update of perceptual, affective and relational expectations and behavioural plans- and, as such, the somatic markers of aesthetic emotions could serve as potential biomarkers for transient states of enhanced brain plasticity. These findings extend neuroaesthetic research to a wide range of human activities focused on learning and cognitive change, such as education and healthcare.

 

We invite researchers to join forces to document, investigate and understand the role of aesthetic experiences in driving change. We expect contributions deeply rooted in neuro-behavioural data and drawing from multidisciplinary approaches, where experimental and applied aesthetic research may dialogue: neurosciences, clinical and experimental neuropsychology, cognitive science, neurocomputational modelling, experimental psychology, clinical and developmental psychology, psychotherapy and psychiatry, as well as neurorehabilitation.

The key domains of application that will be considered in the special issue are the following:

-Learning/Education. Learning models and research on memory (e.g., how do aesthetic principles potentiate learning), design of timelines and spaces for learning, teaching and educational activities in general.

-Mental Health and psychotherapy: possible application of neuroaesthetic principles to psychotherapy, clinical settings and neurorehabilitation contexts. How do aesthetic competences and aesthetic settings serve diagnostic, rehabilitation and therapeutic processes? Research on the aesthetic variables in the therapeutic encounter: e.g., how do aesthetic sensibility and aesthetic tools/practices influence the therapy of neurological/psychopathological conditions?

-Normal and pathological learning: how do aesthetic emotions influence learning processes and plasticity in normal individuals and in psychiatric and neurological patients? Can we obtain a better understanding of the neurocognitive mechanisms subtending psychopathological behaviour using neuroaesthetic principles?

Read more