fetal brain complexity decreases at birth

Surprising new research reveals how fetal brain complexity declines before and after birth

Manuscript, Musings, Proceedings

Cite This Work

  • APA
  • MLA
  • Bibtex

Frohlich, J., Moser, J., Sippel, K., Mediano, P. a. M., Preissl, H., & Gharabaghi, A. (2024). Sex differences in prenatal development of neural complexity in the human brain. Nature Mental Health. https://doi.org/10.1038/s44220-024-00206-4

Frohlich, Joel, Julia Moser, Katrin Sippel, et al. “Sex differences in prenatal development of neural complexity in the human brain.” Nature Mental Health, Feb. 2024, doi:10.1038/s44220-024-00206-4.

@article{Frohlich_Moser_Sippel_Mediano_Preissl_Gharabaghi_2024, title={Sex differences in prenatal development of neural complexity in the human brain}, url={https://doi.org/10.1038/s44220-024-00206-4}, DOI={10.1038/s44220-024-00206-4}, journal={Nature Mental Health}, author={Frohlich, Joel and Moser, Julia and Sippel, Katrin and Mediano, Pedro a. M. and Preissl, Hubert and Gharabaghi, Alireza}, year={2024}, month=feb }

Fetal Brain Complexity: New Research Challenges Expectations

Even as birth nears, the complexity of brain activity decreases with fetal maturation and continues to decline after birth, according to results recently published in Nature Mental Health by a research team with key contributors from the University of Tuebingen, Germany and led by Dr. Joel Frohlich, who also serves as a research consultant for the Institute for Advanced Consciousness Studies in addition to his postdoctoral position in Tuebingen.

Sex Differences in Fetal Brain Development: A Surprising Finding

More surprising still, male and female fetuses show different changes in complexity, with boys declining faster than girls. According to the authors, the study’s findings carry important implications for future efforts to develop predictive biomarkers of psychiatric disorders based on the complexity of brain activity recorded before birth.

Investigating Fetal Brain Activity with MEG

The published manuscript, titled “Sex differences in prenatal development of neural complexity in the human brain”, was sparked by a two-year interdisciplinary collaboration between the laboratories of University of Tuebingen professors Alireza Gharabaghi and Hubert Preissl, with Frohlich serving liaison between the respective labs. Prof. Gharabaghi leads Tuebingen’s Institute for Neuromodulation and Neurotechnology, whose mission to develop new brain stimulation techniques led the institute to consider how sensory stimulation could be safely applied to investigate neural integrity in fetuses and infants, much in the same manner as electromagnetic brain stimulation is currently used in adults. When the collaboration began, Prof. Preissl, director of Tuebingen’s fMEG Center, had already supervised relevant experiments conducted by Dr. Julia Moser (now at the University of Minnesota) and Dr. Katrin Sippel, which gave the team the data they were looking for.

Fetal brain activity has already revealed evidence of learning before birth

The team used magnetoencephalography or MEG (a technology for detecting weak magnetic activity in the brain) to record neural signals non-invasively from third trimester fetuses and newborns. These signals were responses to sequences of auditory tones, which included patterns that were occasionally broken to test if fetuses (and, later, newborn infants) had successfully learned the original sequence. Two earlier research manuscripts, led by Moser, examined these data in the context of fetal and newborn learning and revealed evidence that fetuses respond to pattern violations as early as 35 weeks gestation, late in the third trimester of pregnancy. “Sensory stimulation provides us with a unique opportunity to observe how young brains process information from the outside. And all in a completely safe way,” explained Prof. Preissl in a recent press release.

In the current manuscript, the research team then applied several different algorithms to estimate the complexity of the MEG signals using entropy, or the number of possible ways in which states of the signal can be arranged. Some of these algorithms work by determining how difficult it is to compress the signal, as more complex data are harder to compress. To understand this better, consider the compressed size of two image files on your computer, one depicting a Vermeer painting and the other depicting a Rothko painting. The more complex image (Vermeer) will be harder to compress into a small file. Similarly, more complex brain signals are harder to compress, allowing scientists to estimate their entropy.

A pregnant woman positioning the fetus into the MEG.

Surprising results from fetal brain activity

The researchers originally hypothesized that fetal brain activity would grow more complex with maturation. To their surprise, the opposite occurred. “Intuitively, I had thought that as the brain matures, its activity should grow more complex just as its anatomy and function grows more complex,” said Frohlich. “In hindsight though, it makes a decent amount of sense, especially considering the fact that we recorded brain activity evoked by sensory signals, rather than spontaneous activity.” As the brain develops, it moves away from random patterns toward more ordered modes of activity sculpted by emerging synaptic connections. These connections constrain the number of ways in which the brain can respond to stimuli such as the auditory patterns in the experiment. This is likely why more mature fetal brains showed less complex activity in their responses: these brains had fewer ways of responding to the same stimulus, and thus lower complexity. According to Frohlich, if the experiment had instead looked at spontaneous brain activity in the absence of stimuli, the results might have been different.

Crucial to the team’s conclusions were contributions from Imperial College London professor Pedro Mediano, who shared a sophisticated mathematical algorithm which allowed the team to determine which properties of the fetal brain signals were driving the decrease in their complexity. Using Mediano’s approach, the team found that changes in the amplitude or “strength” of the signal were related to the decreasing complexity. In fact, the effect of amplitude appeared to mask changes caused by another property of the signal, phase, which opposed complexity by driving increases in complexity with maturation. The presence of two opposing processes might partially explain the team’s surprising results with respect to maturation.

However, the effects of fetal sex are still leaving the team slightly puzzled. “I didn’t expect fetal sex to have any impact on neural complexity,” said Frohlich, “but it’s possible that this relates to the greater vulnerability of the male brain during gestation, as many neurodevelopmental disorders, like autism and ADHD, are diagnosed more frequently in boys.” Frohlich is inspired by earlier studies that have linked the complexity of neural activity to brain health, including one previous study which predicted the onset of autism years later from brain activity recorded in young infants. Neurodevelopmental disorders such as autism are best prevented very early in life while the brain is still highly plastic, which creates a need for early detection of risk. “The earlier we identify the risk of developing neuropsychiatric and metabolic disorders, the more effectively we can support brain development to prevent serious illness,” explained Prof. Gharabaghi in a press release.

Looking toward the future

According to Frohlich, whose 2018 PhD dissertation focused on biomarkers of neurodevelopmental disorders, the next step in this line of work will be to follow fetuses several years after birth to see whether the complexity of their fetal brain activity predicts later outcomes such as autism or ADHD. “For example, you could recruit pregnant women who already have a child with autism, which means that the fetus has some familial risk of also developing it. By recording brain activity from the fetus and then following up with the family three years later, you could see if the complexity of prenatal brain activity is predictive of an eventual diagnosis.”

Read more
is cannabis psychedelic? Kind of!

Is Cannabis Psychedelic?

Manuscript, Musings, Proceedings

Cite This Work

  • APA
  • MLA
  • Bibtex

Murray, C. H., Frohlich, J., Haggarty, C. J., Tare, I., Lee, R., & De Wit, H. (2024). Neural Complexity Is Increased After Low Doses of LSD, but Not Moderate to High Doses of Oral THC or Methamphetamine. Neuropsychopharmacology. https://doi.org/10.1038/s41386-024-01809-2

“Neural Complexity Is Increased After Low Doses of LSD, but Not Moderate to High Doses of Oral THC or Methamphetamine.” Neuropsychopharmacology, Jan. 2024, doi:10.1038/s41386-024-01809-2.

@article{Murray_Frohlich_Haggarty_Tare_Lee_De Wit_2024b, title={Neural Complexity Is Increased After Low Doses of LSD, but Not Moderate to High Doses of Oral THC or Methamphetamine}, url={https://doi.org/10.1038/s41386-024-01809-2}, DOI={10.1038/s41386-024-01809-2}, journal={Neuropsychopharmacology}, author={Murray, Conor H. and Frohlich, Joel and Haggarty, Connor J. and Tare, Ilaria and Lee, Royce and De Wit, Harriet}, year={2024}, month=jan }

Cannabis and the Psychedelic: A Historical Perspective

In 1857, the American writer Fitz Hugh Ludlow described his experiences with hashish in his memoir The Hasheesh Eater: Being Passages from the Life of a Pythagorean:

“It is this process of symbolization which, in certain hasheesh states, gives every tree and house, every pebble and leaf, every footprint, feature, and gesture, a significance beyond mere matter or form, which possesses an inconceivable force of tortures or of happiness.”

Delving into Terminology: What Does “Psychedelic” Really Mean?

For Ludlow, hashish infused meaning into everyday objects; his experiences seemed to reveal new parts of the mind, with either blissful or terrifying effects. In 1956, the psychiatrist Humphrey Osmond coined a term to encapsulate such “mind-manifesting” phenomena: psychedelic. Both then and now, the term is mostly applied to drugs like LSD that powerfully alter one’s perception through their action at a specific neurotransmitter receptor called 5HT2a, which receives signals from serotonin, one of the brain’s main chemical messengers. These “classic psychedelics” have a very different pharmacology than tetrahydrocannabinol, or THC, the main active chemical in cannabis. Unlike LSD and the so-called “classic psychedelics”, THC acts similarly to a different class of neurotransmitters called endocannabinoids, which send signals “backwards” across synapses in the brain to regulate neuronal firing. The effects of THC include changes in perception, appetite, and mood; “inconceivable force of tortures or of happiness” as Ludlow described it. But, is this experience “psychedelic”?

Let’s consider the classic psychedelics, like LSD and psilocybin, the main active compound in magic mushrooms. A well known effect of these psychedelics is an increase in the complexity or “diversity” of neural activity. According to one theory, brain complexity during the psychedelic state reflects the increased richness of subjective experience. In short, your experience of the world becomes more complex on psychedelics, and so to does the electrical activity of your cerebral cortex.

The Science of Psychedelic Effects: THC vs. Classic Psychedelics

Recently published work led by my collaborator Conor Murray at UCLA investigated whether oral THC would also increase neural complexity. While at the University of Chicago, Murray and his colleagues recorded electrical brain activity using a non-invasive technology called EEG while one group of healthy volunteers took THC in pill form and another group took a tiny “microdose” of the classic psychedelic LSD in another session (a microdose here means a tiny dose with barely noticeable effects). Note that this THC pill contained synthetic THC, or Marinol, rather than extract from the cannabis plant. Marinol doesn’t contain other cannabis compounds like CBD, and so its effects may be different from those of real cannabis products. Furthermore, some individuals have a genetic background which impairs their liver’s ability to metabolize THC, and these people will be more impacted by oral THC than smoked or vaped THC.  

To also examine how LSD and oral THC compared to a stimulant drug that lacks perception-altering effects, the University of Chicago researchers gave a third group of healthy volunteers a medical preparation of methamphetamine. This medical preparation, similar to what is occasionally prescribed for attention deficit hyperactivity disorder or ADHD, isn’t smoked like “crystal meth”, the drug’s street form, but it still has powerful effects on alertness and attention. For all drugs given in the laboratory—THC, LSD, and methamphetamine—some volunteers took the real drug while others took an inactive placebo.

So, how did these drugs affect the volunteers? When asked how much they felt the drug effect, volunteers felt the most “high” during the THC session, something like a solid 6 or 7 if rated on a scale out of 10. Both the methamphetamine and LSD drug effects were weaker, which isn’t too surprising given that the LSD was only given as a microdose. Furthermore, both THC and LSD increased anxiety, though this effect was stronger in the case of THC.

Exploring Neural Complexity: Does THC Alter Brain Activity Like Psychedelics?

But what about effects on brain activity? I contributed to the study by guiding an analysis of neural complexity. Surprisingly, when each drug’s effect on neural complexity was compared with a placebo, only LSD caused a statistically significant increase in the complexity of brain activity. THC simply did not alter the complexity of EEG signals at significant level, and the small effects it did exert were a mixture of increases and decreases at different EEG sensors.

Psychedelic, or Not? Subjectivity Matters

So, does this mean that oral THC and edible cannabis products aren’t psychedelic? Not so fast. First of all, the changes in complexity observed with LSD didn’t correlate with the drug’s subjective effects, which suggests that the diversity of neural signals changes even before strong effects in one’s mental experience occur. However, this might have been different if participants had been given a larger, “macrodose” of LSD, as other studies have found correlation between neural complexity and the felt effects of macrodosed psychedelics.

Additionally, it’s important to remember that volunteers took Marinol, which lacks the other natural chemicals or “cannabinoids” found in the cannabis plant, such as CBD. Although the main effects of cannabis are exerted by THC, it’s possible that THC also interacts with other cannabinoids, which alter its effects. In other words, a different study using extracts from the cannabis plant might have yielded different results.

is cannabis psychedelic? -- man sits with blindfold after using cannabis surrounded by candlelights.

The Potential Role of Cannabis in Psychedelic Therapy

But finally, and most importantly, we need to remember what the word psychedelic means: to manifest the mind. Many experiences, including some that don’t involve any drugs, reveal hidden aspects of the mind, including meditation, breathwork, and floating in a sensory reduction float tank. In the case of meditation, it’s somewhat unclear whether this activity is accompanied by increases or decreases in neural complexity. But as far as a psychedelic quality is concerned, the ground truth in each case is whatever a person reports: if experiences with meditation or cannabis seems to manifest hidden aspects of the mind, then why can’t we call these experiences psychedelic?

Nonetheless, I think Murray’s recent EEG study of THC has important implications for psychedelic therapy. Psychotherapy, assisted by classic psychedelic compounds like LSD and psilocybin, is now being studied in many countries as a treatment for depression, addiction, and anxiety surrounding terminal illness. All clinical trials must compare these compounds to an inactive placebo (a pill with no effects) to determine if any benefit the patient experiences is really due to the drug or just due to what the patient expects will happen, a self-fulfilling prophesy of sorts. Because most psychiatric drugs have rather subtle effects—you don’t really notice much after popping a Prozac pill—placebo controlled trials generally work well. Classic psychedelics like LSD, on the other hand, have extremely obvious effects—participants know when they’re assigned to the placebo group, which alters their expectations of whether their symptoms will improve.

One solution to this problem would be to use an active placebo—a compound with noticeable, yet different, effects than a classic psychedelic drug like LSD. An active placebo would be as similar as possible to LSD without actually sharing its possible therapeutic properties. Drugs that act at the 5HT2a receptor, like LSD and psilocybin, are not merely psychedelic; they also increase the brain’s capacity to change and rewire itself, which is likely key to their ability to help pull people out of depression. In this context, the drugs are known as “psychoplastogens”. Cannabis, on the other hand, is not a psychoplastogen—as bizarre as a given experience with cannabis may be, it is unlikely to trigger massive rewiring of the brain comparable to changes induced by LSD. And yet, it may cause strong alternations in perception, which follow a long time course when taken orally (as a pill or edible) similar to classic psychedelics, often needing up to an hour or two to start after the oral dose is consumed. This might make cannabis a better comparison in psychedelic drug trials than a simple, inactive placebo. In such a trial, it would be less obvious to participants which treatment they had been assigned to, helping to control for expectancy effects.

Regardless of whether neural complexity changes track how psychedelic a substance feels, its specificity to LSD in Murray’s study suggests that it might be a biomarker specific to effects caused by LSD and not THC. If future studies show that neural complexity tracks some therapeutic property of LSD that THC lacks, then clinical trials of psychoplastogens might use neural complexity to differentiate between effects of the treatment versus another psychoactive drug used as a control, like oral THC. This idea is supported by the fact that ketamine, another psychoplastogen with antidepressant properties (albeit one that does not act at 5HT2a receptors) is also known to increase neural complexity.

Defining ‘Psychedelic’ and the Importance of Respectful Use

At the end of the day, the question of whether cannabis, edible or otherwise, is “psychedelic” is really a matter of semantics—how do we define psychedelic? And whether or not it’s regarded as psychedelic, THC shows both important differences and similarities with classic psychedelics like LSD. While these drugs have different uses and risks, THC may be comparable enough with classic psychedelics to serve the much needed purpose of providing a psychoactive control in psychedelic therapy.

Finally, whether or not you consider cannabis to be psychedelic, it and other psychoactive substances should be treated with respect and caution. Drugs discussed in this article have the ability to alter the mind, which, depending on the context and intentions behind their use, can be either therapeutic or harmful.

Read more
Aesthetic chills mitigate maladaptive cognition in depression-- an important finding showcasing the power of positive affect promotion.

Aesthetic chills mitigate maladaptive cognition in depression

E4001, Manuscript, Proceedings, Review

Get The Article

Cite This Work

  • APA
  • MLA
  • Bibtex

Schoeller, F., Jain, A., Adrien, V., Maes, P., & Reggente, N. (2024). Aesthetic chills mitigate maladaptive cognition in depression. BMC Psychiatry, 24(1). https://doi.org/10.1186/s12888-023-05476-3

“Aesthetic Chills Mitigate Maladaptive Cognition in Depression.” BMC Psychiatry, vol. 24, no. 1, Jan. 2024, https://doi.org/10.1186/s12888-023-05476-3.

@article{Schoeller_Jain_Adrien_Maes_Reggente_2024c, title={Aesthetic chills mitigate maladaptive cognition in depression}, volume={24}, url={https://doi.org/10.1186/s12888-023-05476-3}, DOI={10.1186/s12888-023-05476-3}, number={1}, journal={BMC Psychiatry}, author={Schoeller, Félix and Jain, Abhinandan and Adrien, Vladimir and Maes, Pattie and Reggente, Nicco}, year={2024}, month=jan }

Using peak positive affect (aesthetic chills) to help with depression

In our recent collaboration with Pattie Maes’s Fluid Interfaces group at MIT Media Lab and Dr. Vladimir Adrien from Assistance Publique Hôpitaux de Paris (APHP) in France, we investigated the potential for aesthetic chills to serve as an innovative intervention for major depressive disorder. This effort is a considerable advancement towards the notion of promoting positive affect in depression, which stands in contrast to standard care which is mostly focused on mitigating negative affect.

Instead of focusing on how to help individuals with depression not feel so bad, this work suggests the potential of helping those individuals by presenting them with content so they can feel good.

Aesthetic chills are characterized by sensations like shivers, goosebumps, and tingling that arise in response to emotional experiences with art, music, or nature. We hypothesized that by eliciting chills through validated multimedia stimuli, we could positively influence the core beliefs and self-schemas of individuals with depression. Across two studies with 96 participants diagnosed with major depressive disorder, we engaged participants in randomized sessions involving chill-inducing and neutral control stimuli across visual, auditory, and written modalities. Our results demonstrated that aesthetic chills induced a notable increase in self-acceptance among depressed participants. Chill-inducing stimuli appeared to facilitate positive emotional breakthroughs and shifts in self-perception that could address cognitive distortions related to depression. The data further suggest that aesthetic chills may engage reward-related neural pathways similarly to interventions like psychedelic-assisted therapy.

Individuals with major depressive disorder reported more emotional breakthroughs in their maladaptive cognition (e.g., lack of self-acceptance) when they reported getting chills compared to individuals who viewed the same content, but didn’t get chills. This also scaled as a function of the intensity of those chills.

While preliminary, these findings bring much-needed attention to the potential for aesthetic chills to positively influence core beliefs and schemas related to the self and one’s place in the world. For individuals with depression stemming from early adverse experiences, chill-inducing stimuli could foster emotional catharsis and lasting change to maladaptive self-narratives developed as coping mechanisms. Our research provides initial evidence that the biological processes involved in aesthetic chills can be harnessed for therapeutic ends. Chill-based interventions offer a promising avenue for large-scale study given the ease of dissemination through multimedia experiences.

Looking forward, further research should explore the neurophysiological mechanisms of aesthetic chills and biomarkers that may predict individual responses. Larger clinical trials are needed to investigate optimal protocols and delivery methods for chill-based therapy. We believe aesthetic chills represent an innovative non-pharmacological intervention that warrants greater attention from the psychiatry, psychology, and human-computer interaction communities.

shift + ⏎ to add a ne

Read more
interoceptive technologies for clinical use cases

Interoceptive Technologies for Psychiatric Interventions: A Comprehensive Review

E4001, Manuscript, Proceedings, Review

Cite This Work

  • APA
  • MLA
  • Bibtex

Schoeller, F., Horowitz, A. H., Jain, A., Maes, P., Reggente, N., Christov-Moore, L., . . . Friston, K. J. (2024). Interoceptive technologies for psychiatric interventions: From diagnosis to clinical applications. Neuroscience & Biobehavioral Reviews, 156, 105478. https://doi.org/10.1016/j.neubiorev.2023.105478

Schoeller, Félix, Adam Haar Horowitz, et al. “Interoceptive Technologies for Psychiatric Interventions: From Diagnosis to Clinical Applications.” Neuroscience & Biobehavioral Reviews, vol. 156, Jan. 2024, p. 105478. https://doi.org/10.1016/j.neubiorev.2023.105478.

@article{Schoeller_Horowitz_Jain_Maes_Reggente_Christov-Moore_Pezzulo_Barca_Allen_Salomon_et al._2024, title={Interoceptive technologies for psychiatric interventions: From diagnosis to clinical applications}, volume={156}, url={https://doi.org/10.1016/j.neubiorev.2023.105478}, DOI={10.1016/j.neubiorev.2023.105478}, journal={Neuroscience & Biobehavioral Reviews}, author={Schoeller, Félix and Horowitz, Adam Haar and Jain, Abhinandan and Maes, Pattie and Reggente, Nicco and Christov-Moore, Leonardo and Pezzulo, Giovanni and Barca, Laura and Allen, Micah and Salomon, Roy and Miller, Mark and Di Lernia, Daniele and Riva, Giuseppe and Tsakiris, Manos and Chalah, Moussa A. and Klein, Arno and Zhang, Ben and Garcia, Teresa and Pollack, Ursula and Trousselard, Marion and Verdonk, Charles and Dumas, Guillaume and Adrien, Vladimir and Friston, Karl J.}, year={2024}, month=jan, pages={105478} }

What Is Interoception?

Interoception refers to our awareness of internal bodily signals like heartbeat, breathing, and digestion. While often overlooked, emerging research is revealing interoception as a fundamental process underlying emotion, cognition, and mental health. A new multidisciplinary review led by IACS senior research scientist Felix Schoeller and published in Neuroscience & Biobehavioral Reviews explores the profound significance of interoception and its potential applications in psychiatric diagnosis and treatment.

Directly manipulating interoceptive signals in experiments has proven challenging due to the highly invasive techniques currently used, like esophageal balloon distension. There is also a lack of standardized, validated measures of interoceptive function across research disciplines as “the lack of correlation across unimodal tests underscores the need for multimodal approaches that assess integration of interoceptive information across bodily systems.” Drawing from fields like psychology, physiology, psychiatry, engineering, and neuroscience, the article provides a detailed account of the neurobiology of interoception, describing it as a hierarchical predictive processing system in the brain, and emphasizing the key role of dysfunctional interoceptive processing in disorders like anxiety, depression, and eating disorders.

What are Interoceptive Technologies?

The review also explores in details existing paradigms for modulating interoception, like interoceptive conditioning. This involves pairing internal bodily sensations with aversive stimuli to reshape emotional and physiological responses through a form of classical conditioning. The authors discuss clinical applications of these approaches, such as interoceptive exposure therapy for anxiety disorders. They also propose a new classification system for interoceptive technologies, dividing them into three categories: artificial sensations that induce novel bodily perceptions, interoceptive illusions that manipulate the precision of predictions, and emotional augmentation systems that facilitate beneficial changes in beliefs or behaviors.

interoceptive technologies examples

Figure 1. Overview of interoceptive technologies: A) the breath-holding test as an artificial sensation, whereby some bodily signal is directly manipulated, B) false heart feedback as an interoceptive illusion, where contextual cues generate a perceptual drift (here the illusion that the heart beats faster at a faster-than-expected rate), C) the therapeutic alliance as entrainment, where the patient’s heart rate slows down as the therapist’s is increasing, leading both to tend towards some average value, D) augmented exposure therapy as emotional augmentation, similar to B but with additional exteroceptive cues having personal significance to the individual (e.g. eliciting the trauma-related memory) favoring an emotional explanation for the interoceptive drift.

Such technologies could have powerful implications. Artificially inducing bodily sensations could help diagnose psychiatric conditions by testing patients’ susceptibility to developing skewed predictions about their internal state. More advanced emotional augmentation systems could precisely modulate predictive processes to reshape maladaptive cognitions and behaviors. While acknowledging that much remains unknown, the review shows the vast potential for interoceptive interventions to improve diagnosis and treatment of mental health disorders. Developing standardized measures and new technologies to precisely manipulate interoceptive signaling may open transformative frontiers in biological psychiatry and psychology.

Read more
infant consciousness in the lab

New research sheds fresh light on mystery of infant consciousness

Manuscript, Proceedings, Review

Get The Article

  • Article PDF
  • Trends in Cognitive Science Article

Cite This Work

  • APA
  • MLA
  • Bibtex

Bayne, T., Frohlich, J., Cusack, R., Moser, J., & Naci, L. (2023). Consciousness in the cradle: on the emergence of infant experience. Trends in Cognitive Sciences.

Bayne, Tim, et al. “Consciousness in the cradle: on the emergence of infant experience.” Trends in Cognitive Sciences (2023).

@article{bayne2023consciousness, title={Consciousness in the cradle: on the emergence of infant experience}, author={Bayne, Tim and Frohlich, Joel and Cusack, Rhodri and Moser, Julia and Naci, Lorina}, journal={Trends in Cognitive Sciences}, year={2023}, publisher={Elsevier} }

New research sheds fresh light on mystery of infant consciousness

When does consciousness begin? There is evidence that some form of conscious experience is present by birth, and perhaps even in late pregnancy, an international team of researchers led by Tim Bayne of Monash University in Melbourne, Australia and Joel Frohlich of the University of Tuebingen in Germany and the US-based Institute for Advanced Consciousness Studies in Santa Monica, California has concluded in a new review manuscript. The findings, just published in the peer-reviewed journal ‘Trends in Cognitive Science’, have important clinical, ethical, and potentially legal implications, according to the authors.

In the study, entitled ‘Consciousness in the cradle: on the emergence of infant experience’, the researchers argue that, by birth, the infant’s developing brain is likely capable of conscious experiences. Although each of us was once a baby, infant consciousness remains mysterious, because infants cannot tell us what they think or feel, explains one of the two lead authors of the paper Dr. Tim Bayne, Professor of Philosophy at Monash University. 

“Nearly everyone who has held a newborn infant has wondered what, if anything, it is like to be a baby. But of course we cannot remember our infancy, and consciousness researchers have disagreed on whether consciousness arises ‘early’ (at birth or shortly after) or ‘late’ ­– by one year of age, or even much later.”

To provide a new perspective on when consciousness first emerges, the team reviewed recent advances in consciousness science. In adults, some markers from brain imaging have been found to reliably differentiate consciousness from its absence, and are increasingly applied in science and medicine. This is the first time that these advances, as translated to infants, have been reviewed in detail.

Co-author of the study, Dr. Lorina Naci, Associate Professor at Trinity College Dublin in Ireland, who leads the ‘Consciousness and Cognition Group’, explained: “Our findings suggest that newborns can integrate sensory and developing cognitive responses into coherent conscious experiences to understand the actions of others and plan their own responses.”

It is even possible that birth itself triggers the onset of consciousness. “Probably the first thing the newborn infant realizes is that the outside world is very unpredictable relative to the womb environment,” explained co-lead author and postdoctoral researcher  Dr. Joel Frohlich. “Things are constantly changing, and so the newborn must build a mental model of the world to adapt and predict things.” 

However, the authors don’t rule out the possibility that consciousness might already start some weeks beforehand.  “Julia Moser’s work shows that third-trimester fetuses appear to be capable of learning sequences of auditory beeps,” said Dr. Frohlich, referring to his co-author Dr. Moser at the University of Minnesota. “When an auditory tone deviates from a pattern established earlier in the experiment, the fetus shows this ‘surprise’ response in its magnetic brain activity. The neural activity shows a field deflection as if the fetus is saying ‘huh?’.”

The paper also sheds light into ‘what it is like’ to be a baby. We know that seeing is much more immature in babies than hearing, for example (see the image below for a theoretical depiction). Furthermore, this work suggests that, at any point in time, infants are aware of fewer items than adults, and can take longer to grasp what’s in front of them, but they can easily process more diverse information, such as sounds from other languages, than their older selves. 

infant consciousness differences in perception

“Infants can perceive many things which adults cannot, like the differences between vowel sounds in a foreign language,” explained Dr. Joel Frohlich. “By 10 months or so, we lose this ability as the brain decides these perceptual differences are no longer relevant and discards them.” 

Read more
woman doing a grocery task, showcasing the need for VR for cognition and memory

VR for Cognition and Memory

Manuscript, Proceedings, Protocol-002

This blog post is based on a recent book chapter “VR for Cognition and Memory” in Current Topics in Behavioral Neuroscience: Virtual Reality in Behavioral Neuroscience: New Insights and Methods. This work presents a review of research on VR’s ability to provide ecologically valid environments to study memory and cognition and discusses how features like interactivity, locomotion, and contextual control engage the brain’s memory systems more naturally than lab studies.

Get The Article

  • PDF
  • Paywalled Chapter

Cite This Work

  • APA
  • AMA
  • MLA

Reggente N. (2023). VR for Cognition and Memory. Current topics in behavioral neurosciences, 10.1007/7854_2023_425. Advance online publication. https://doi.org/10.1007/7854_2023_425

Reggente N. VR for Cognition and Memory [published online ahead of print, 2023 Jul 14]. Curr Top Behav Neurosci. 2023;10.1007/7854_2023_425. doi:10.1007/7854_2023_425

Reggente, Nicco. “VR for Cognition and Memory.” Current topics in behavioral neurosciences, 10.1007/7854_2023_425. 14 Jul. 2023, doi:10.1007/7854_2023_425

Revolutionizing Cognition Research with Virtual Reality

For decades, scientists have worked tirelessly to elucidate the intricate neural machinery supporting human cognition. This endeavor is certainly not for the faint of heart, as formidable challenges present themselves at every turn.

“To study cognition holistically means investigating interconnections between its rich repertoire of functions, including attention, reasoning, language, and memory. Memory is a particularly crucial facet, as it supports and subserves all other aspects of cognition; no cognitive task can be accomplished without memory.”

A holistic understanding demands that we study cognition as it operates in its natural habitat – the real world. Otherwise, as the parable of the blind men and the elephant warns, we risk gross mischaracterizations. Researchers must therefore conduct experiments in “verisimilar contexts (i.e. contexts appearing as the RW)” to achieve ecological validity.

Virtual reality (VR) presents an unprecedented opportunity in this regard. By simulating the real world, we can now study memory and cognition with enhanced veridicality.

“The environmental customization afforded by VR makes it an ideal tool for studying cognition in an ecologically valid fashion. Through the lens of memory studies, this chapter showcases the ways in which VR has advanced a meaningful and applicable understanding of cognition.”

The article presents a thorough review of research that showcases how VR is revolutionizing the study of cognition and memory.

Bridging the Gap Between Lab and Real-World Cognition

Traditional lab experiments often possess limited generalizability, whereas VR can provide naturalistic environments and tasks that echo real-world demands, easily bolstering ecological validity. Previous work has made a compelling case for how VR enhances the ecological validity of fMRI memory research.

VR experiences engage recollection-based memory retrieval akin to real events, unlike lab stimuli which rely more on familiarity. Indeed, VR experiences appear to be retrieved via recollection-based processes similar to those that support autobiographical/recollection memory, whereas retrieval of conventional screen experiences seems more similar to familiarity. This makes VR apt for integrated cognition and memory research.

VR Permits for Information to be Situation in Space

Most importantly, VR permits realistic navigation around virtual environments (c.f.), affording users with a sense of space (the scaffolding of memory). Both philosophers and psychologists alike postulate that brains have evolved solely to support purposeful and predictable movement. Many posit that the ontogeny of episodic memory relates to the onset of locomotion during infancy that scales with Hippocampal development (which also provides a mechanism for infantile amnesia and age-related episodic memory loss). One source of evidence to support this proposition is in the life cycle of the bluebell tunicate. This filter feeder begins to digest a substantial chunk of its cerebral ganglion once identifying a suitable undersea perch to spend the rest of its existence. This phenomenon suggests that once it has served its purpose as a neural network supporting movement, the cerebral ganglion yields greater utility to the organism as nutrition.

From chemotaxis to cognitive maps, a representation of space is necessary for meaningful movement. A neural instantiation of a map that provides spatial bookmarks of an organism’s experiences, demarcating the locations of nutrition and enemies within an environment, is a fundamental component of brains. Indeed, there is a primacy of spatial content in the neural representation of events. Spatial information is often recalled earliest in the retrieval process, and the degree to which individuals report confidence in their autobiographical memories is predicted by their knowledge of the spatial layout of the setting in which the memory occurred. The Method of Loci (a.k.a. Memory Palace) mnemonic has long been appreciated for its ability to increase memory by imagining to-be-remembered information placed at familiar locations. Past work used a VR implantation of this technique to suggest that the principal component behind mnemonic efficacy is the explicit binding of the objects to a spatial location and revealed a tight relationship between spatial memory (SM) and free recall of encoded objects. These observations showcase that space and memory are inextricably linked at conceptual and neuronal levels – a notion that has become entrenched in popular culture; the phrase “out of space” is often used when indicating a computer’s memory is full.

a fantastical virtual environment that could be used to study the relationship between objects, positions, and memory.

If space is the inescapable wallpaper that serves as the backdrop for all experience, then it follows that as our spatial or environmental context changes, so should the neural activity underlying diverse cognitive processes. Given that VR can easily change environments, it provides an unparalleled landscape with which to study the intersection of space, memory, and cognition.

Additionally, VR enables human analogs of spatial memory research previously limited to animal models, like virtual radial arm mazes. This facilitates powerful translational research from rodents to humans.

Key Features of VR That Facilitate Cognition Research

Below are some features highlighted by the chapter that are exclusive to VR. Such features permit real-world scenarios with increased experimental control and significantly less costs.

  • VR provides absolute control over the environment. This permits isolation and systematic manipulation of spatial contexts, immersion, emotions, embodiment, etc.
  • Rapid teleportation between environments induces robust context-dependent learning, a fundamental principle in memory encoding.
  • Interactivity and locomotion increase embodiment and navigational involvement, enhancing hippocampal memory systems.
  • Implicit metrics like gaze, paths, and object interactions generate objective measures of memory and attention unbiased by subjective reporting.
  • Brain imaging during VR reveals in vivo neural correlates of cognition impossible with real-world navigation.
  • VR spatial mnemonics such as the Method of Loci can provide performance improvements over just imagination by standardizing and controlling the environments.

Applications of VR for Assessing and Enhancing Cognition

Conventional measures of memory typically focus on core content (i.e., the “what”) instead of the true binding that happens in actual episodes (i.e., “what,” where,” and “when”). They also often use verbal materials, which makes the test sensitive to performance in non-memory domains, permitting for compensatory strategies which could erroneously reveal normal “memory.” Subjective reports rarely scale with performance on traditional memory tests, warranting criticism that such measures wrongly estimate memory capacities for everyday situations. For example, patients reporting topographical memory deficits have preserved ability in tabletop tests of spatial or geographical knowledge. Additionally, cognitive complaints in amnesiacs typically show little correlation with verbal memory tests used in clinical settings.

VR tasks, however, have been more reliable in tracking self and caregiver reports of deficits that impact quality of life. The points below highlight other aspects of VR that can increase the ecological validity of both the detection and amelioration of memory deficits.

  • VR scenarios like virtual stores and routes enable sensitive, ecologically valid tools to identify mild cognitive impairment early.
  • VR spatial navigation paradigms can differentiate Alzheimer’s from milder impairment based on hippocampal recruitment patterns.
  • VR enables safe exposure therapy for memory deficits induced by trauma and realistic training for brain injury rehabilitation.
  • Spatial mnemonic techniques adapted to VR boost memory beyond baseline abilities in healthy individuals.
  • VR puzzles engage aging minds, increasing motivation. Long-term regimes may prevent decline. As one study found, “6 months of VR training powerfully increased long-term recall.”
  • VR training could augment real-world cognition and rehabilitate deficits, with proven memory transfer effects.

In conclusion, VR enables an unprecedented ability to understand real-world cognition, precisely diagnose impairments, and develop interventions that enhance memory and cognition. The immersive, interactive nature of VR environments engages our brains’ memory systems far more naturally than traditional lab studies.

The inherently engaging qualities of VR, coupled with its ability to implicitly quantify and enhance memory, make it a powerful tool in populations spanning from pediatrics to the elderly.

Indeed, VR may catalyze discoveries about the very mechanisms underlying human consciousness itself, which intimately relies on episodic memory. By augmenting these processes, VR could profoundly transform our experience and understanding of consciousness. The future of cognition research has never looked more exciting.

Read more
artificial empathy could create an artificial boddhisattva

Sociopathic Superintelligences, Artificial Empathy, and Robot Bodhisattvas, Oh My!

E4001, Manuscript, PSAI

This blog post is based on a recent publication “Preventing antisocial robots: A pathway to artificial empathy” at Science Robotics

Get the Article

  • PDF
  • Paywalled Article

Preventing Antisocial Robots: A Pathway to Artificial Empathy

PDF

Preventing antisocial robots: A pathway to artificial empathy at Science Robotics

Cite This Work

  • APA
  • MLA
  • Chicago
  • Harvard
  • Vancouver

Christov-Moore, L., Reggente, N., Vaccaro, A., Schoeller, F., Pluimer, B., Douglas, P. K., Iacoboni, M., Man, K., Damasio, A., & Kaplan, J. T. (2023). Preventing antisocial robots: A pathway to artificial empathy. Sci. Robot, 8, eabq3658. https://doi.org/10.1126/scirobotics.abq3658

Christov-Moore, Leonardo, et al. “Preventing Antisocial Robots: A Pathway to Artificial Empathy.” Sci. Robot, vol. 8, eabq3658, 2023, https://doi.org/10.1126/scirobotics.abq3658.

Christov-Moore, Leonardo, Nicco Reggente, Anthony Vaccaro, Felix Schoeller, Brock Pluimer, Pamela K. Douglas, Marco Iacoboni, Kingson Man, Antonio Damasio, and Jonas T. Kaplan. “Preventing Antisocial Robots: A Pathway to Artificial Empathy.” Sci. Robot 8 (2023): eabq3658. https://doi.org/10.1126/scirobotics.abq3658.

Christov-Moore, L., Reggente, N., Vaccaro, A., Schoeller, F., Pluimer, B., Douglas, P. K., Iacoboni, M., Man, K., Damasio, A., & Kaplan, J. T. (2023). Preventing antisocial robots: A pathway to artificial empathy. Sci. Robot, 8, eabq3658. https://doi.org/10.1126/scirobotics.abq3658

Christov-Moore L, Reggente N, Vaccaro A, Schoeller F, Pluimer B, Douglas PK, Iacoboni M, Man K, Damasio A, Kaplan JT. Preventing antisocial robots: A pathway to artificial empathy. Sci. Robot. 2023;8:eabq3658. doi:10.1126/scirobotics.abq3658.

Look, whether you’re a doomer or a techno-utopian, whether you were ready or not, the age of artificial intelligence (AI) probably arrived sometime in this decade. This age brings deep, important, and melancholy reflections on intelligence, creativity, and what it is to be human. However, If we can’t ensure that AI is aligned with human interests, we may have little time to reflect. Containment, or a giant pause button, is not a likely option. There is too much real-world inertia and distrust among world actors to ensure everyone will comply – and it only takes one successful experiment to unleash a truly unforeseen problem into the world. In a new paper in Science Robotics, we tackle this problem through three big ideas, that we’ll call the problem, the path, and the potential.

The Problem

There is a pressing need to imbue AI with a value system that allows it to “understand” harm in way that inherently demotivates it from making catastrophic, irreversible decisions, without the need for complex rule systems. This value system must scale with AI’s rapid self-improvement and adaptations as it encounters novel situations and greater responsibilities for peoples’ well-being. Biology suggests that empathy could provide this value. Empathy allows us to understand and share the feelings of others, motivating us to alleviate suffering and bring happiness.

a sociopathic robot that has explicitly programmed artificial empathy

However, most approaches to artificial empathy focus on allowing AI to decode internal states and act empathetically, neglecting the crucial capacity for shared feeling that drives organisms to care for others. Here lies the problem: Our attempt to create empathic AI may inadvertently result in agents that can read us perfectly and manipulate our feelings, without any genuine interest in our wellbeing, or understanding of our suffering. Our well-meaning attempts to produce empathy may produce superintelligent sociopaths.

The Path Towards Artificial Empathy

If we are giving birth to the next form of life, it’s not far-fetched to see ourselves as collective parents, with a civilizational responsibility. When you’re raising something as potentially powerful as AI, what should you do? The formative years of powerful yet ethical figures like Buddha, Jesus (or Spiderman) teach us that the responsibility of great power is learned by experiencing the suffering that all living beings endure. Power without vulnerability and compassion can easily cause harm, not necessarily through malice, but through obliviousness or an unconstrained drive to fulfill desires.

a robot learns artificial empathy by first learning compassion, especially with regard to alignment to human wants and needs

To address this, we propose a speculative set of guidelines for future research in artificial empathy. Firstly, even if it’s only during a specific phase of their training, AI need to possess a vulnerable body that can experience harm, and learn to exist in an environment where actions have consequences for its physical integrity. Secondly, AI should learn by observing other agents and understanding the relationship between their experiences and the state of their own bodies, similar to how it understands itself. Lastly, AI should learn to interact with other agents in a way that avoids harm to itself and others. Perhaps it will emergently behave in a more ethical fashion if harm to others is processed like harm to itself. Vulnerability is the common ground from which genuine concern and aversion to harm naturally emerge.

The Potential of Artificial Empathy

Achieving true artificial empathy could transform AI from a potential global threat to a world-saving ally. While human empathy is crucial in preventing harm and promoting prosocial behavior, it is inherently biased. We tend to prioritize the suffering of a single relatable person over the plight of a stranger or very large numbers of people. This bias arises due to our brain’s difficulties in handling the large-scale, long-term, and nonlinear problems often encountered in complex societies. The scalable cognitive complexity of an empathic AI might be capable of proposing compassionate solutions to these grand challenges that surpass the human capacity for comprehension and imagination. However, every solution brings new challenges.  How can we trust an intelligence that surpasses our own? What sort of responsibilities will we have for an intelligence that can suffer?

If we are the collective parents to a new superbeing, we must decide, right now, what kind of parents we are going to be, and what kind of relationship we want with our progeny. Do we want to try and control something we fear, or do the work to raise someone we can trust, to care for us in old age?

If we are the collective parents to a new superbeing, we must decide, right now, what kind of parents we are going to be, and what kind of relationship we want with our progeny. Do we want to try and control something we fear, or do the work to raise someone we can trust, to care for us in old age? Let’s be far-fetched for a short moment:  maybe we can guide the development of the upcoming superintelligences toward what Buddhist scholars call “metta,” a cultivation of universal compassion for all beings. Maybe the next Buddha will be artificial.

a depiction of what the eventuality of imbuing AI with artificial empathy could look like: an artificial buddha

We are grateful to the Templeton World Charity Foundation and Tiny Blue Dot Foundation for making this work possible. We also extend our thanks to the Survival and Flourishing Fund for their recent award, which will enable us to implement these ideas in simulations with the assistance of talented researchers such as Adam Safron, Guillaume Dumas, and Zahra Sheikh. You can keep track of our latest developments on our artificial empathy project page.

Read more

The Consciousness Compass

Musings
section-ca3cc10

The Consciousness Compass

Edited by GPT 4. Illustrated by MidJourney. What does this mean? See Afterword below.

 

"What the hell is ‘a common denominator of consciousness’”? you ask me.

We’re in a café in the city on a rainy day. You’ve just opened my new paper on your laptop, recently published in the peer-reviewed Nature Portfolio journal Biology Communications. I crack my neck, pause for a beat, and then ask you a question.

“Would a ‘consciousness compass’ make more sense?”

You shake your head no. What the hell is he talking about, you’re thinking. Okay. I’m ready for that.

“Let’s put these on,” I say, and I pull two virtual reality head-mounted displays along with haptic suits and place them on the table.

“Seriously?” you ask.

“It’s easier to show you,” I say.

We both strap the haptic suits and VR headsets on, and in a flash, we’re suddenly whisked away to … somewhere. The landscape is naked rocks in every direction and the sky is a cloudless blue. It looks sweltering hot, you think, and you’re glad we’re only in VR. Occasionally, a shrub or a small cactus dares to peak out from behind a boulder. Why are we here, peaking out too?

“Joshua Tree?” your avatar asks me. Bingo. It’s a National Park we’ve both visited a dozen times. But off trail, everything starts to look the same. Rocks and boulders in every direction. I pull a compass from my pocket.

“If we want to get back to the campsite, we just need a map and a compass.”

“I know how a compass works,” you say, rolling your eyes.

I pull the simple gadget from my pocket. It renders nicely in VR, wobbling a little bit as I steer it around in my hand. I point in the direction of the compass needle.

“So this way is north, right?”

You cock your eyebrow. “Well, yeah. I don’t need to be a boy scout to know that.” What am I getting at?

“It’s almost north,” I say, “but not quite. Magnetic north isn’t true north. There’s a bias.” I snap my fingers and away we go again.

We’re on the edge of a fjord, glaciers blanketing the land around us, icebergs drifting by. You didn’t bring a jacket, and you’re still glad that you can't feel the temperature in VR.

“We’re in Nunavut, Canada. Can you get us to the north pole?” I ask, handing you the compass.

“I get it,” you say, “I know. Earth’s magnetic pole doesn’t align with the geographic pole. The compass is less useful now because we’re already so close to the location where the two poles diverge.”

https://i0.wp.com/advancedconsciousness.org/wp-content/uploads/2023/04/wherearewe.jpg?resize=891%2C557&ssl=1

“You got it,” I said. “And what’s more,” I add, “the north magnetic pole is constantly drifting by many kilometers each year. It’s worse than just being a little off from the north geographic pole: it’s a moving target. If you use it as an approximation of the north geographic pole, the error isn’t constant: it’s always changing.”

You do a sarcastic slow clap. Even in VR, your avatar is expressive. What does this have to do with the Communications Biology paper?

“Let’s try one more place,” I say, and with a quick nod, we’re back in the desert again. But this time, the desert is different. The soil is much redder and entirely devoid of vegetation. The sky is clear again, but now a surreal pink rather than a serene blue. You look toward the horizon, and it almost looks like the moon is rising … but it’s much too small, and rising much too fast, with a strange potato shape, not a glorious lunar disc.

“We’re on Mars?” you ask.

“Yes, time for Phobos to rise,” I say, referring to the larger of Mars’ two moons. “I would almost say it’s my favorite time of day … but actually, it happens twice a day.”

“What are we doing here?”

I hand you the compass. Your spacesuited avatar takes it and gives it a hard look.

“The needle is taking a while to settle. But if the moon is rising—I mean, if Phobos is rising—then that direction must be east,” you say pointing toward the Phobos-rise.

“Not so fast. Phobos orbits faster than Mars rotates—it rises in the west and sets in the east.”

“Fine, west then. But anyway, why won’t the compass work? It’s still just spinning.”

“There’s the rub,” I say. “There’s no global magnetic field on Mars. Nothing to directly tell us which way is north. Plenty of iron rocks to confuse the needle though.”

“Okay, you got me. What’s your point?”

I take the compass from you and toss it in the Martian dirt. “What we need,” I say, “is a universal compass. A compass that points north under all circumstances, no matter where we are. A compass to guide us just as reliably in Canada as in California, just as reliably on Mars as on Earth.”

You shrug. “I think a normal compass works just fine most of the time. How often are we really going to be exploring the Artic or crawling around on Mars?”

“But that is exactly when we need a compass the most,” I retort. “When we are off exploring, in the unknown. When the world is familiar, we can get our bearings easily. But on the frontiers, there are few things worth more than a reliable compass.”

“Okay, I get it. When we’re in a new place, we can’t rely on familiar landmarks.”

“Yes,” I say, and I know there’s no smile rendering through my opaque spacesuit visor, but you can feel my grin. “And so it is too, with consciousness. When brain dynamics are familiar—the same old familiar activity that neuroscientists and neurologists see each time electrodes are placed on the scalp to record electrical brain activity or EEG—that’s when you hardly need a compass. After all, you know that large, highly synchronized, slowly oscillating brain waves indicate deep sleep or unconsciousness. And you know, equally well, that low amplitude, desynchronized, fast brain waves indicate consciousness, either as wakefulness or dreaming.”

You nod and take off your space helmet. “I’m glad we’re in VR,” you say, looking around with your bare eyes. “Why are we wearing these things anyway? We don’t need oxygen.”

“Are you paying attention?”

“Yeah, just a little distracted. I mean, we’re on freakin’ Mars.”

I snap my fingers, and again, we’re in a beautiful place again, but this time teaming with life and people. We gaze out the window from the fifth floor of an office building in Santa Monica. Palm trees dot the busy street outside. Off in the distance, to the south (yes, the compass works again!) a plane lands at LAX, and further west, you see the U.S. Bank Tower, Wilshire Grand Center, and other jewels in the skyline of downtown LA. Santa Monica Beach is somewhere just around the next city block. Mars, on the other hand, is now over 100 million kilometers away.

“Where am I?” you ask. Behind us, a young man in a plaid shirt steps out of his office. “Who are you?”

“I’m Nicco Reggente, welcome to IACS!” he answers with a smile as he grabs a kombucha from the fridge. You slowly scan the office space and catch a glimpse of me—a year or so younger—coding away on a laptop.

“Institute for Advanced Consciousness Studies,” I clarify. “This is where I wrapped up the project, sitting over there, running surrogate data simulations.”

You look lost, and I realize I’ve gotten ahead of myself.

https://i0.wp.com/advancedconsciousness.org/wp-content/uploads/2023/04/santamonica.jpg?resize=891%2C557&ssl=1

"So, back to consciousness," I continue, "just like with the compass, when we venture into unfamiliar territories, we need a more reliable way to measure consciousness. The familiar landmarks and patterns of brain activity can only take us so far. In cases of severe brain injury, anesthetic drugs, or genetic disorders, we need a 'common denominator of consciousness' to guide us."

You nod, taking in the view of the bustling cityscape. "Alright, I get it now. You're saying that we need a 'consciousness compass' to help us navigate these uncharted territories where EEG brain waves lose their usual meaning. Once the brain is lesioned or challenged by drugs, EEG waves begin to behave strangely and all bets are off.”

"Exactly," I say. "The 'common denominator of consciousness' is a compass that can guide us through the complex landscape of profoundly altered brain activity. In a nutshell, what we want to know is whether a person is still experiencing themselves or the world around them, regardless of whether they have the capacity to respond to tasks or questions.”

You take a seat in a chair, contemplating my idea. "Okay, I think I got the gist of it,” you say with a nod.

I lift my finger and say “Let’s consider some of the traumatic brain injury patients at the UCLA Medical Center”

 “Can we not teleport this time? I just sat down.”

“It’s just a bit down Wilshire actually, but okay, as you wish,” I say with a grin, also taking a seat across from you. “The patients in the intensive care unit at the hospital are often unresponsive, so we can’t simply ask them ‘are you conscious?’. And because of their severe brain injuries, it’s not clear what their EEG oscillations mean. A doctor might see slow waves on a patient’s EEG and assume this means the patient is unconscious But these slow waves could also be the ‘loud scream’ of a focal brain lesion, appearing everywhere in the EEG recording as electrical signals conduct from this focal lesion to distant regions of the skull and scalp!”

"Right,” you say “I get it, looking at slow waves in these patients might be like relying on a magnetic compass to find north on Mars. But you don’t know for sure which patients are conscious, so how can you develop a better compass from their data?”

“Ah, that’s a big problem with some earlier studies,” I say. “Even if we throw machine learning at lots of data, we often lack the ‘ground truth’ which tells us which patients are conscious and which are not. So in my new paper, we don’t look at those patients at all.”

“You don’t?”

“No—instead, we look at children with rare genetic disorders during sleep and wakefulness. We know that these children are conscious when they are awake, just like you and me. And we know that they are probably experiencing nothing during the ‘non-REM’ stage of sleep, where vivid dreams are unlikely. That’s our ground truth. But, a bit like other neurological patients, these children have unusual EEG patterns. In one disorder, called Angelman syndrome, the children show slow EEG activity resembling sleep during wakefulness. And in another disorder, called Dup15q syndrome, the children show fast EEG activity, almost resembling wakefulness, during non-REM sleep.”

I see the lightbulb flash in your eyes, and finally, this long trek through VR feels worth it. “So whatever EEG patterns reliably indicate consciousness in these children, despite their abnormal EEGs, those patterns are the common denominator of consciousness we might want to use as our compass!”

“You got it! And lastly, we also look at healthy, typically developing children to make sure that those patterns generalize to them, also indicating consciousness in normal EEGs.”

"All right, so what did you find?" you ask, genuinely intrigued now.

"We found that a particular family of measures, called entropy, were the most reliable indicators of consciousness in both the children with genetic disorders and typically developing children," I explain.

“Entropy … isn’t that something from physics?”

“Right, physicists like to talk about entropy as the number of possible ways to arrange a system or signal, kind of like ‘disorder’. In EEG, entropy measures show us how complex the signals are. It’s low when the signal is highly regular and predictable, and it’s high when the signal is irregular and unpredictable. Overall, entropy appears to be much more reliable in identifying conscious brain activity than traditional EEG measures based on amplitude and frequency.”

You lean back, processing the information. "So, in a way, you've discovered a 'compass' that points to consciousness, regardless of the brain's individual quirks or injuries. It's like a universal compass that works on Earth and Mars, even when the magnetic poles are shifted or absent."

"Exactly," I say with a smile. "This 'common denominator of consciousness' could help doctors and researchers identify consciousness in unresponsive patients, even when it’s masked by unusual EEG patterns. It's a step toward better understanding and treating severely brain-injured patients, like those in the intensive care unit at UCLA, and making sure that we don’t misdiagnose someone with a ‘vegetative state’ just because they can’t respond to our questions. Ultimately, it might also reveal something about the mechanisms of subjective experience, as many neuroscientists think that neural complexity is foundational to consciousness itself.”

The sun begins to set outside the window, casting a warm glow across the room. You take a deep breath and look back at me. "Well, it looks like I've got some reading to do. This paper of yours just got a lot more interesting."

With that, we remove our VR headsets and haptic suits, returning to the familiar surroundings of the café. But as my eyes focus again, I see the café manager walking toward us, looking none too happy.

“Excuse me," he says sternly, "this is a café, not a VR gaming center. You’ve knocked over enough glasses and chairs. Please pack up your equipment and take your drinks."

Embarrassed, we quickly apologize and start to gather our things. As we sip our now lukewarm coffees, you glance over at me, a mirthful smile playing at the corner of your lips.

And so, we continue our search for the common denominators of consciousness and life, one spilled coffee at a time.

https://i0.wp.com/advancedconsciousness.org/wp-content/uploads/2023/04/spilledcoffee.jpg?resize=891%2C557&ssl=1
section-1ea6e20

Afterword: Using generative AI as a copilot

Generative artificial intelligence (AI) assisted with the production of this blog post, from GPT 4 suggesting what should come next in the story, to Midjourney version 5 generating custom illustrations to accompany the text. The past several months have seen enormous advances in AI and, as of this writing, the future role of generative AI as a “copilot” in activities ranging from writing to coding remains uncertain. Five years from now, transparency statements such as this one may be completely unnecessary, just as you feel no obligation to disclose having used the spell checker in your word processor. Or, perhaps society will shun generative AI tools for spoiling creative work and taking fulfilling jobs away from humans. Either possibility feels plausible at this point. We are truly in terra incognita.

So, how exactly did generative AI assist with the production of this blog post? Midjourney’s role is obvious—I have no artistic talent in visual art, and so AI art programs like Midjourney are really the only option for me to illustrate a casual blogpost with no budget. But the player you’re probably really wondering about is GPT 4—what role did this quasi-AGI play in my blog post?

For the first half of my writing, the answer was, none whatsoever. I began writing this idiosyncratic present tense short story to explain my recent Communications Biology publication one morning in February this year when inspiration struck. Then, as tends to happen, I got busy with other things and didn’t revisit my story until two months later.

When I returned to the story in April, the characters had just teleported in VR to Santa Monica. I knew what I wanted to have happen, but writer’s block wouldn’t let me put it down in words. So, I pasted what I had written thus far into ChatGPT and let the GPT 4 model continue my story. Here’s what it suggested:

"So, back to consciousness," I continue, "just like with the compass, when we venture into unfamiliar territories, we need a more reliable way to measure and understand consciousness. The familiar landmarks and patterns of brain activity can only take us so far. With new technologies, artificial intelligence, and novel states of consciousness, we need a 'common denominator of consciousness' to guide us."

You nod, taking in the view of the bustling cityscape. "Alright, I get it now. You're saying that we need a 'consciousness compass' to help us navigate these uncharted territories in neuroscience and beyond."

The GPT 4 story then continues for several more paragraphs, but the dialogue gets increasingly vague, misdirected, and shallow. Still, I like the transition, so I used the first two sentences from GPT 4’s suggestion. And buried a few paragraphs down, there’s a gem that I decide to also use later in my story.

The sun begins to set outside the window, casting a warm glow across the room. You take a deep breath and look back at me. "Well, it looks like I've got some reading to do. This paper of yours just got a lot more interesting."

But after my character finishes explaining the methods of the paper to “you”, I called upon GPT 4’s help again. This time, the dialogue was much more on the mark from a technical perspective.

"Alright, so what did you find?" you ask, genuinely intrigued now.

"We found that a particular measure, called the Lempel-Ziv complexity, was the most reliable indicator of consciousness in both the children with genetic disorders and typically developing children," I explain. "This measure quantifies the complexity of the EEG signal, and it appears to be much more reliable in identifying conscious brain activity than traditional EEG measures like amplitude and frequency."

Wow, I really did use Lempel-Ziv complexity (among other entropy measures) in my paper! And since I hadn’t mentioned Lempel-Ziv yet in the story, this appears to be GPT 4 drawing on its knowledge of the scientific literature to do just what it was designed to do: predict what words should come next in a text (yes, everything else you might use ChatGPT for, like debugging code or tutoring you in a foreign language, is just a side effect). I felt that Lempel-Ziv was a bit too technical for this post—there wasn’t any need to introduce jargon or specific algorithms for estimating entropy—but I nonetheless tweaked some of GPT 4’s dialogue, revising it to fit my vision of the story, and incorporated it into the blog post.

I then called on GPT 4 for help one last time at the conclusion of the story, when the characters reenter the real world. Again, I knew what I wanted to have happen: the characters have wreaked havoc on the café and are duly expelled. After a bit of back and forth with GPT 4, I got the prose that I was looking for, including the last line of the story. I asked GPT 4 to “Make the final line thought provoking and provocative.” The baby AGI gave me five different options, but I took the first one, with just some slight tweaking.

And so, we continue our search for the common denominators of life, one spilled coffee at a time.

So, what is the future role of GPT 4 and large language models in creative writing? Will these generative AIs serve as our virtual editors, suggesting new directions for a story and penning a few of our best lines? Or will we eventually see these tools as the artistic equivalent of performance enhancing drugs—the writer’s version of doping?

Alas, this is one question that GPT 4 cannot answer.

section-a8ead51
Read more
picture of someone who has depression getting chills and then opening up some hope

Chills Foster Emotional Breakthrough In Depression

E4001, Proceedings
section-c55d31c

Get the Article

Aesthetic chills foster self-acceptance and emotional breakthrough in depression

Open Source Article

Cite This Work

Schoeller, Felix, et al. “Aesthetic Chills Foster Self-Acceptance and Emotional Breakthrough in Depression.” 2022, https://doi.org/10.31234/osf.io/rhftq.

Schoeller, F., Jain, A., Adrien, V., & Maes, P. (2022). Aesthetic chills foster self-acceptance and emotional breakthrough in depression. https://doi.org/10.31234/osf.io/rhftq

Schoeller, Felix, Abhinandan Jain, Vladimir Adrien, and Pattie Maes. “Aesthetic Chills Foster Self-Acceptance and Emotional Breakthrough in Depression,” 2022. https://doi.org/10.31234/osf.io/rhftq.

Schoeller F, Jain A, Adrien V, Maes P. Aesthetic chills foster self-acceptance and emotional breakthrough in depression. 2022 Dec 21;https://www.frontiersin.org/articles/10.3389/fnins.2022.1013117/full

 

Schoeller, F., Jain, A., Adrien, V. and Maes, P. (2022). Aesthetic chills foster self-acceptance and emotional breakthrough in depression. doi:https://doi.org/10.31234/osf.io/rhftq.

section-77d399c

Chills Foster Emotional Breakthrough In Depression

Chills are a common emotional response to stimuli, whether it's from listening to your favorite music or engaging with deeply moving films. But did you know that this bodily response may hold potential for therapeutic intervention for individuals diagnosed with depression?

A recent exploratory study examined the effects of chills stimulation on subjects clinically diagnosed with depression. The study found that chill-inducing stimuli may have the potential to affect the core schema of depressed patients, specifically in terms of shame and self-acceptance. The results suggest that the mechanism of action during the chills response may resemble the form of problem resolution induced by the psychedelic and psychotherapeutic experience, leading to similar positive outcomes for the subject.

This study sheds light on the potential therapeutic value of aesthetic chills for reward-related or dopaminergic illnesses. Further research is needed to fully understand the effects of chills on mental health and to determine the feasibility and safety of using aesthetic chills as a therapeutic intervention.

It's exciting to think about the potential of aesthetic chills as a novel form of body-based experience to draw people out of anhedonia and depression and help them find meaning in life again. As research in this field progresses, we may see more developments in the use of chills stimulation as a therapeutic intervention for mental health.

section-0cc0b79
Abstract

Aesthetic chills, a strong emotional reaction characterized by a specific bodily response of thermoregulatory mechanisms such as shivers and goosebumps, may hold scientific and clinical potential for reward-related or dopaminergic illnesses. In this first exploratory study, we examined the effects of chills stimulation on subjects clinically diagnosed with depression. Our results suggest that chill-inducing stimuli may have the potential to affect the core schema of depressed patients, specifically in terms of shame and self-acceptance. These results suggest that the mechanism of action during the chills response may resemble the form of problem resolution induced by the psychedelic and psychotherapeutic experience, leading to similar positive outcomes for the subject. Further research is needed to fully understand the effects of chills on mental health and to determine the feasibility and safety of using aesthetic chills as a therapeutic intervention.

a graph showing how chills can have an impact on emotional breakthrough, which has huge implications for depression
Read more

IACS Research Featured in Vice

Press
section-2299c88

Exciting news!

Our research has been featured in Vice magazine's motherboard section. Hannah Docter-Loeb from Motherboard wrote a short piece about our research on chills stimuli with MIT Media Lab and the Gonda Brain Research Centre.

Cite This Work

Vice. (2023, March 24). [web log]. Retrieved from https://www.vice.com/en/article/pkaywn/heres-a-database-of-media-scientifically-verified-to-give-you-the-chills.

Here's a Database of Media Scientifically Verified to Give You the Chills, Vice, 24 Mar. 2023, https://www.vice.com/en/article/pkaywn/heres-a-database-of-media-scientifically-verified-to-give-you-the-chills.

Web log. Here's a Database of Media Scientifically Verified to Give You the Chills (blog). Vice, March 24, 2023. https://www.vice.com/en/article/pkaywn/heres-a-database-of-media-scientifically-verified-to-give-you-the-chills.

Docter-Loeb, H. (2023) Here's a Database of Media Scientifically Verified to Give You the Chills. Vice, 24 March. Available at: https://www.vice.com/en/article/pkaywn/heres-a-database-of-media-scientifically-verified-to-give-you-the-chills.

Here’s a Database of Media Scientifically Verified to Give You the Chills [Internet]. www.vice.com. [cited 2023 Apr 12]. Available from: https://www.vice.com/en/article/pkaywn/heres-a-database-of-media-scientifically-verified-to-give-you-the-chills

 

Text Body

IACS Research Featured in Vice

The article explores the fascinating world of chills and the emotional response they elicit in individuals.

In an effort lead by Dr. Felix Schoeller at IACS, and in collaboration with the MIT Media Lab, and the Gonda Multidisciplinary Brain Research Centre, researchers have created a database of stimuli that have the potential to induce chills. The stimuli include music, film, and speech, and were compiled from social media platforms such as YouTube and Reddit.

We chose the top 50 videos from the database and randomly introduced them to over 600 participants on a crowdsourcing platform. The results showed that participants who experienced chills reported significantly more positive emotional valence and greater arousal during the experience, compared to those who did not experience chills.

We believe that understanding the emotional consequences of chills can help guide mental health interventions. They are exploring the option of using chills as a novel intervention for depression, and are even developing a device to artificially elicit the emotion and multiply its effects.

This is an exciting development in the field of mental health and could potentially offer a new avenue for treatment for individuals suffering from depression and other mood disorders. We are thrilled to be a part of this groundbreaking research and look forward to seeing what the future holds.

 

Read more