Day: March 1, 2024

fetal brain complexity decreases at birth

Surprising new research reveals how fetal brain complexity declines before and after birth

Manuscript, Musings, Proceedings

Cite This Work

  • APA
  • MLA
  • Bibtex

Frohlich, J., Moser, J., Sippel, K., Mediano, P. a. M., Preissl, H., & Gharabaghi, A. (2024). Sex differences in prenatal development of neural complexity in the human brain. Nature Mental Health. https://doi.org/10.1038/s44220-024-00206-4

Frohlich, Joel, Julia Moser, Katrin Sippel, et al. “Sex differences in prenatal development of neural complexity in the human brain.” Nature Mental Health, Feb. 2024, doi:10.1038/s44220-024-00206-4.

@article{Frohlich_Moser_Sippel_Mediano_Preissl_Gharabaghi_2024, title={Sex differences in prenatal development of neural complexity in the human brain}, url={https://doi.org/10.1038/s44220-024-00206-4}, DOI={10.1038/s44220-024-00206-4}, journal={Nature Mental Health}, author={Frohlich, Joel and Moser, Julia and Sippel, Katrin and Mediano, Pedro a. M. and Preissl, Hubert and Gharabaghi, Alireza}, year={2024}, month=feb }

Fetal Brain Complexity: New Research Challenges Expectations

Even as birth nears, the complexity of brain activity decreases with fetal maturation and continues to decline after birth, according to results recently published in Nature Mental Health by a research team with key contributors from the University of Tuebingen, Germany and led by Dr. Joel Frohlich, who also serves as a research consultant for the Institute for Advanced Consciousness Studies in addition to his postdoctoral position in Tuebingen.

Sex Differences in Fetal Brain Development: A Surprising Finding

More surprising still, male and female fetuses show different changes in complexity, with boys declining faster than girls. According to the authors, the study’s findings carry important implications for future efforts to develop predictive biomarkers of psychiatric disorders based on the complexity of brain activity recorded before birth.

Investigating Fetal Brain Activity with MEG

The published manuscript, titled “Sex differences in prenatal development of neural complexity in the human brain”, was sparked by a two-year interdisciplinary collaboration between the laboratories of University of Tuebingen professors Alireza Gharabaghi and Hubert Preissl, with Frohlich serving liaison between the respective labs. Prof. Gharabaghi leads Tuebingen’s Institute for Neuromodulation and Neurotechnology, whose mission to develop new brain stimulation techniques led the institute to consider how sensory stimulation could be safely applied to investigate neural integrity in fetuses and infants, much in the same manner as electromagnetic brain stimulation is currently used in adults. When the collaboration began, Prof. Preissl, director of Tuebingen’s fMEG Center, had already supervised relevant experiments conducted by Dr. Julia Moser (now at the University of Minnesota) and Dr. Katrin Sippel, which gave the team the data they were looking for.

Fetal brain activity has already revealed evidence of learning before birth

The team used magnetoencephalography or MEG (a technology for detecting weak magnetic activity in the brain) to record neural signals non-invasively from third trimester fetuses and newborns. These signals were responses to sequences of auditory tones, which included patterns that were occasionally broken to test if fetuses (and, later, newborn infants) had successfully learned the original sequence. Two earlier research manuscripts, led by Moser, examined these data in the context of fetal and newborn learning and revealed evidence that fetuses respond to pattern violations as early as 35 weeks gestation, late in the third trimester of pregnancy. “Sensory stimulation provides us with a unique opportunity to observe how young brains process information from the outside. And all in a completely safe way,” explained Prof. Preissl in a recent press release.

In the current manuscript, the research team then applied several different algorithms to estimate the complexity of the MEG signals using entropy, or the number of possible ways in which states of the signal can be arranged. Some of these algorithms work by determining how difficult it is to compress the signal, as more complex data are harder to compress. To understand this better, consider the compressed size of two image files on your computer, one depicting a Vermeer painting and the other depicting a Rothko painting. The more complex image (Vermeer) will be harder to compress into a small file. Similarly, more complex brain signals are harder to compress, allowing scientists to estimate their entropy.

A pregnant woman positioning the fetus into the MEG.

Surprising results from fetal brain activity

The researchers originally hypothesized that fetal brain activity would grow more complex with maturation. To their surprise, the opposite occurred. “Intuitively, I had thought that as the brain matures, its activity should grow more complex just as its anatomy and function grows more complex,” said Frohlich. “In hindsight though, it makes a decent amount of sense, especially considering the fact that we recorded brain activity evoked by sensory signals, rather than spontaneous activity.” As the brain develops, it moves away from random patterns toward more ordered modes of activity sculpted by emerging synaptic connections. These connections constrain the number of ways in which the brain can respond to stimuli such as the auditory patterns in the experiment. This is likely why more mature fetal brains showed less complex activity in their responses: these brains had fewer ways of responding to the same stimulus, and thus lower complexity. According to Frohlich, if the experiment had instead looked at spontaneous brain activity in the absence of stimuli, the results might have been different.

Crucial to the team’s conclusions were contributions from Imperial College London professor Pedro Mediano, who shared a sophisticated mathematical algorithm which allowed the team to determine which properties of the fetal brain signals were driving the decrease in their complexity. Using Mediano’s approach, the team found that changes in the amplitude or “strength” of the signal were related to the decreasing complexity. In fact, the effect of amplitude appeared to mask changes caused by another property of the signal, phase, which opposed complexity by driving increases in complexity with maturation. The presence of two opposing processes might partially explain the team’s surprising results with respect to maturation.

However, the effects of fetal sex are still leaving the team slightly puzzled. “I didn’t expect fetal sex to have any impact on neural complexity,” said Frohlich, “but it’s possible that this relates to the greater vulnerability of the male brain during gestation, as many neurodevelopmental disorders, like autism and ADHD, are diagnosed more frequently in boys.” Frohlich is inspired by earlier studies that have linked the complexity of neural activity to brain health, including one previous study which predicted the onset of autism years later from brain activity recorded in young infants. Neurodevelopmental disorders such as autism are best prevented very early in life while the brain is still highly plastic, which creates a need for early detection of risk. “The earlier we identify the risk of developing neuropsychiatric and metabolic disorders, the more effectively we can support brain development to prevent serious illness,” explained Prof. Gharabaghi in a press release.

Looking toward the future

According to Frohlich, whose 2018 PhD dissertation focused on biomarkers of neurodevelopmental disorders, the next step in this line of work will be to follow fetuses several years after birth to see whether the complexity of their fetal brain activity predicts later outcomes such as autism or ADHD. “For example, you could recruit pregnant women who already have a child with autism, which means that the fetus has some familial risk of also developing it. By recording brain activity from the fetus and then following up with the family three years later, you could see if the complexity of prenatal brain activity is predictive of an eventual diagnosis.”

Read more
is cannabis psychedelic? Kind of!

Is Cannabis Psychedelic?

Manuscript, Musings, Proceedings

Cite This Work

  • APA
  • MLA
  • Bibtex

Murray, C. H., Frohlich, J., Haggarty, C. J., Tare, I., Lee, R., & De Wit, H. (2024). Neural Complexity Is Increased After Low Doses of LSD, but Not Moderate to High Doses of Oral THC or Methamphetamine. Neuropsychopharmacology. https://doi.org/10.1038/s41386-024-01809-2

“Neural Complexity Is Increased After Low Doses of LSD, but Not Moderate to High Doses of Oral THC or Methamphetamine.” Neuropsychopharmacology, Jan. 2024, doi:10.1038/s41386-024-01809-2.

@article{Murray_Frohlich_Haggarty_Tare_Lee_De Wit_2024b, title={Neural Complexity Is Increased After Low Doses of LSD, but Not Moderate to High Doses of Oral THC or Methamphetamine}, url={https://doi.org/10.1038/s41386-024-01809-2}, DOI={10.1038/s41386-024-01809-2}, journal={Neuropsychopharmacology}, author={Murray, Conor H. and Frohlich, Joel and Haggarty, Connor J. and Tare, Ilaria and Lee, Royce and De Wit, Harriet}, year={2024}, month=jan }

Cannabis and the Psychedelic: A Historical Perspective

In 1857, the American writer Fitz Hugh Ludlow described his experiences with hashish in his memoir The Hasheesh Eater: Being Passages from the Life of a Pythagorean:

“It is this process of symbolization which, in certain hasheesh states, gives every tree and house, every pebble and leaf, every footprint, feature, and gesture, a significance beyond mere matter or form, which possesses an inconceivable force of tortures or of happiness.”

Delving into Terminology: What Does “Psychedelic” Really Mean?

For Ludlow, hashish infused meaning into everyday objects; his experiences seemed to reveal new parts of the mind, with either blissful or terrifying effects. In 1956, the psychiatrist Humphrey Osmond coined a term to encapsulate such “mind-manifesting” phenomena: psychedelic. Both then and now, the term is mostly applied to drugs like LSD that powerfully alter one’s perception through their action at a specific neurotransmitter receptor called 5HT2a, which receives signals from serotonin, one of the brain’s main chemical messengers. These “classic psychedelics” have a very different pharmacology than tetrahydrocannabinol, or THC, the main active chemical in cannabis. Unlike LSD and the so-called “classic psychedelics”, THC acts similarly to a different class of neurotransmitters called endocannabinoids, which send signals “backwards” across synapses in the brain to regulate neuronal firing. The effects of THC include changes in perception, appetite, and mood; “inconceivable force of tortures or of happiness” as Ludlow described it. But, is this experience “psychedelic”?

Let’s consider the classic psychedelics, like LSD and psilocybin, the main active compound in magic mushrooms. A well known effect of these psychedelics is an increase in the complexity or “diversity” of neural activity. According to one theory, brain complexity during the psychedelic state reflects the increased richness of subjective experience. In short, your experience of the world becomes more complex on psychedelics, and so to does the electrical activity of your cerebral cortex.

The Science of Psychedelic Effects: THC vs. Classic Psychedelics

Recently published work led by my collaborator Conor Murray at UCLA investigated whether oral THC would also increase neural complexity. While at the University of Chicago, Murray and his colleagues recorded electrical brain activity using a non-invasive technology called EEG while one group of healthy volunteers took THC in pill form and another group took a tiny “microdose” of the classic psychedelic LSD in another session (a microdose here means a tiny dose with barely noticeable effects). Note that this THC pill contained synthetic THC, or Marinol, rather than extract from the cannabis plant. Marinol doesn’t contain other cannabis compounds like CBD, and so its effects may be different from those of real cannabis products. Furthermore, some individuals have a genetic background which impairs their liver’s ability to metabolize THC, and these people will be more impacted by oral THC than smoked or vaped THC.  

To also examine how LSD and oral THC compared to a stimulant drug that lacks perception-altering effects, the University of Chicago researchers gave a third group of healthy volunteers a medical preparation of methamphetamine. This medical preparation, similar to what is occasionally prescribed for attention deficit hyperactivity disorder or ADHD, isn’t smoked like “crystal meth”, the drug’s street form, but it still has powerful effects on alertness and attention. For all drugs given in the laboratory—THC, LSD, and methamphetamine—some volunteers took the real drug while others took an inactive placebo.

So, how did these drugs affect the volunteers? When asked how much they felt the drug effect, volunteers felt the most “high” during the THC session, something like a solid 6 or 7 if rated on a scale out of 10. Both the methamphetamine and LSD drug effects were weaker, which isn’t too surprising given that the LSD was only given as a microdose. Furthermore, both THC and LSD increased anxiety, though this effect was stronger in the case of THC.

Exploring Neural Complexity: Does THC Alter Brain Activity Like Psychedelics?

But what about effects on brain activity? I contributed to the study by guiding an analysis of neural complexity. Surprisingly, when each drug’s effect on neural complexity was compared with a placebo, only LSD caused a statistically significant increase in the complexity of brain activity. THC simply did not alter the complexity of EEG signals at significant level, and the small effects it did exert were a mixture of increases and decreases at different EEG sensors.

Psychedelic, or Not? Subjectivity Matters

So, does this mean that oral THC and edible cannabis products aren’t psychedelic? Not so fast. First of all, the changes in complexity observed with LSD didn’t correlate with the drug’s subjective effects, which suggests that the diversity of neural signals changes even before strong effects in one’s mental experience occur. However, this might have been different if participants had been given a larger, “macrodose” of LSD, as other studies have found correlation between neural complexity and the felt effects of macrodosed psychedelics.

Additionally, it’s important to remember that volunteers took Marinol, which lacks the other natural chemicals or “cannabinoids” found in the cannabis plant, such as CBD. Although the main effects of cannabis are exerted by THC, it’s possible that THC also interacts with other cannabinoids, which alter its effects. In other words, a different study using extracts from the cannabis plant might have yielded different results.

is cannabis psychedelic? -- man sits with blindfold after using cannabis surrounded by candlelights.

The Potential Role of Cannabis in Psychedelic Therapy

But finally, and most importantly, we need to remember what the word psychedelic means: to manifest the mind. Many experiences, including some that don’t involve any drugs, reveal hidden aspects of the mind, including meditation, breathwork, and floating in a sensory reduction float tank. In the case of meditation, it’s somewhat unclear whether this activity is accompanied by increases or decreases in neural complexity. But as far as a psychedelic quality is concerned, the ground truth in each case is whatever a person reports: if experiences with meditation or cannabis seems to manifest hidden aspects of the mind, then why can’t we call these experiences psychedelic?

Nonetheless, I think Murray’s recent EEG study of THC has important implications for psychedelic therapy. Psychotherapy, assisted by classic psychedelic compounds like LSD and psilocybin, is now being studied in many countries as a treatment for depression, addiction, and anxiety surrounding terminal illness. All clinical trials must compare these compounds to an inactive placebo (a pill with no effects) to determine if any benefit the patient experiences is really due to the drug or just due to what the patient expects will happen, a self-fulfilling prophesy of sorts. Because most psychiatric drugs have rather subtle effects—you don’t really notice much after popping a Prozac pill—placebo controlled trials generally work well. Classic psychedelics like LSD, on the other hand, have extremely obvious effects—participants know when they’re assigned to the placebo group, which alters their expectations of whether their symptoms will improve.

One solution to this problem would be to use an active placebo—a compound with noticeable, yet different, effects than a classic psychedelic drug like LSD. An active placebo would be as similar as possible to LSD without actually sharing its possible therapeutic properties. Drugs that act at the 5HT2a receptor, like LSD and psilocybin, are not merely psychedelic; they also increase the brain’s capacity to change and rewire itself, which is likely key to their ability to help pull people out of depression. In this context, the drugs are known as “psychoplastogens”. Cannabis, on the other hand, is not a psychoplastogen—as bizarre as a given experience with cannabis may be, it is unlikely to trigger massive rewiring of the brain comparable to changes induced by LSD. And yet, it may cause strong alternations in perception, which follow a long time course when taken orally (as a pill or edible) similar to classic psychedelics, often needing up to an hour or two to start after the oral dose is consumed. This might make cannabis a better comparison in psychedelic drug trials than a simple, inactive placebo. In such a trial, it would be less obvious to participants which treatment they had been assigned to, helping to control for expectancy effects.

Regardless of whether neural complexity changes track how psychedelic a substance feels, its specificity to LSD in Murray’s study suggests that it might be a biomarker specific to effects caused by LSD and not THC. If future studies show that neural complexity tracks some therapeutic property of LSD that THC lacks, then clinical trials of psychoplastogens might use neural complexity to differentiate between effects of the treatment versus another psychoactive drug used as a control, like oral THC. This idea is supported by the fact that ketamine, another psychoplastogen with antidepressant properties (albeit one that does not act at 5HT2a receptors) is also known to increase neural complexity.

Defining ‘Psychedelic’ and the Importance of Respectful Use

At the end of the day, the question of whether cannabis, edible or otherwise, is “psychedelic” is really a matter of semantics—how do we define psychedelic? And whether or not it’s regarded as psychedelic, THC shows both important differences and similarities with classic psychedelics like LSD. While these drugs have different uses and risks, THC may be comparable enough with classic psychedelics to serve the much needed purpose of providing a psychoactive control in psychedelic therapy.

Finally, whether or not you consider cannabis to be psychedelic, it and other psychoactive substances should be treated with respect and caution. Drugs discussed in this article have the ability to alter the mind, which, depending on the context and intentions behind their use, can be either therapeutic or harmful.

Read more