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Simultaneous localization and mapping (SLAM) represents a fundamental

problem for autonomous embodied systems, for which the

hippocampal/entorhinal system (H/E-S) has been optimized over the

course of evolution. We have developed a biologically-inspired SLAM

architecture based on latent variable generative modeling within the Free

Energy Principle and Active Inference (FEP-AI) framework, which affords

flexible navigation and planning in mobile robots. We have primarily focused

on attempting to reverse engineer H/E-S “design” properties, but here

we consider ways in which SLAM principles from robotics may help us

better understand nervous systems and emergent minds. After reviewing

LatentSLAM and notable features of this control architecture, we consider

how the H/E-S may realize these functional properties not only for physical

navigation, but also with respect to high-level cognition understood as

generalized simultaneous localization and mapping (G-SLAM). We focus on

loop-closure, graph-relaxation, and node duplication as particularly impactful

architectural features, suggesting these computational phenomena may

contribute to understanding cognitive insight (as proto-causal-inference),

accommodation (as integration into existing schemas), and assimilation

(as category formation). All these operations can similarly be describable

in terms of structure/category learning on multiple levels of abstraction.

However, here we adopt an ecological rationality perspective, framing H/E-S

functions as orchestrating SLAM processes within both concrete and abstract

hypothesis spaces. In this navigation/search process, adaptive cognitive

equilibration between assimilation and accommodation involves balancing
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tradeoffs between exploration and exploitation; this dynamic equilibrium may

be near optimally realized in FEP-AI, wherein control systems governed by

expected free energy objective functions naturally balance model simplicity

and accuracy. With respect to structure learning, such a balance would

involve constructing models and categories that are neither too inclusive nor

exclusive. We propose these (generalized) SLAM phenomena may represent

some of the most impactful sources of variation in cognition both within

and between individuals, suggesting that modulators of H/E-S functioning

may potentially illuminate their adaptive significances as fundamental

cybernetic control parameters. Finally, we discuss how understanding H/E-

S contributions to G-SLAM may provide a unifying framework for high-level

cognition and its potential realization in artificial intelligences.

KEYWORDS

SLAM, free energy principle, active inference, hippocampal and entorhinal systems,
hierarchical generative models, robotics, artificial intelligence

Introduction

“We take almost all the decisive steps in our lives as a result
of slight inner adjustments of which we are barely conscious.”

—W.G. Sebald.

“Not all those who wander are lost.”
—J.R.R. Tolkien, The Riddle of Strider, The Fellowship

of the Ring.

“We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.”

—T.S. Elliot, Little Gidding.

Autonomous systems face a fundamental challenge of
needing to understand where they are positioned as they
move through the world. Towards this end, roboticists
have extensively investigated solutions to the problem of
simultaneous localization and mapping (SLAM), whereby
systems must infer both a map of their surroundings and
their relative locations as they navigate through space (Cadena
et al., 2016). Considering that these same challenges face any
freely moving cybernetic system, natural selection has similarly
exerted extensive teleonomical (i.e., illusory purposefulness)
optimization in this direction (Dennett, 2017; Safron, 2019b), so
generating mechanisms for enabling wayfinding and situating
organisms within environments where they engage in multiple
kinds of adaptive foraging. Perhaps the most sophisticated of
all biological SLAM mechanisms is the hippocampal-entorhinal
system (H/E-S), whereby vertebrates become capable of both

remembering where they have been, inferring where they are,
and shaping where they are likely to go next.

Here, we argue that the development of the H/E-S
represented a major transition in evolution, so enabling
the emergence of teleology (i.e., actual goal-directedness) of
various forms (Safron, 2021b), ranging from governance by
expected action-outcome associations to explicitly represented
and reflexively modellable causal sequences involving extended
self-processes. We focus on the implications of SLAM capacities
via the H/E-S, and of evidence that this functionality may
have been repurposed for intelligent behavior and cognition
in seemingly non-spatial domains. We propose that all
cognition and goal-oriented behavior (broadly construed to
include mental actions) is based on navigation through
spatialized (re-)representations, ranging from modeling abstract
task-structures to temporal sequences, and perhaps even
sophisticated motor control via SLAM with respect to body
maps. Indeed, we would go as far as to suggest that the ubiquity
of implicit and explicit spatial metaphors in language strongly
points to a perspective in which cognition is centered on the
localization and mapping of phenomena within both concrete
and abstract feature spaces (Lakoff and Johnson, 1999; Bergen,
2012; Tversky, 2019).

In these ways, we believe Generalized Simultaneous
Localization and Mapping (G-SLAM) may provide enactive
groundings for cognitive science within the principles of
ecological rationality (Todd and Gigerenzer, 2012). That is,
we adopt a perspective in which cognition is traced back
to its ultimate origins, wherein rationality is understood in
terms of adaptations for shaping animal behavior in ways that
further evolutionary fitness. Such ecological and ethological
connections further provide bridges to optimal foraging theory
and (generalized) search processes as ways of understanding
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cognition as a kind of covert behavior (Hills et al., 2013).
While somewhat similar models of intelligence have been
proposed (Hawkins, 2021), we suggest these other views may
be somewhat misleading in neglecting to account for the
central role of the H/E-S for realizing G-SLAM. In addition to
providing an accurate viewpoint that grounds cognition in its
cybernetic function as shaped over the course of evolution and
development, G-SLAM will further allow rich cross-fertilization
of insights between cognitive science and artificial intelligence.
Given the particular functionalities enabled by the H/E-S, we
propose this reverse-engineering project ought to be the central
focus of cognitive science and machine learning, potentially
constituting the most viable path forward towards realizing AI
with advanced capacities for reasoning and planning (Bengio,
2017).

A thorough discussion of these issues is beyond the scope
of a single manuscript. However, below we attempt to provide
an overview of why we believe the G-SLAM perspective may
provide a unification framework for cognitive science. First (in
Section “LatentSLAM, a bio-inspired SLAM algorithm”), we
review our work on biologically-inspired SLAM architectures for
robotics. Then, we consider features of the H/E-S, including its
functionality for localization and mapping in both physical and
abstract domains. Finally, we discuss correspondences between
features of SLAM and core aspects of cognitive functioning. We
hope to explain how common principles may apply not only to
the fundamental task of finding one’s way to desired locations
in physical space, but for thought as navigation through abstract
spaces. While much of what follows will necessarily be under-
detailed and speculative, in subsequent publications, we (and
hopefully others) will explore these issues in greater detail as we
attempt to explain fundamental principles in neuroscience and
artificial intelligence, while simultaneously seeking synergistic
understanding by establishing conceptual mappings between
these domains (Hassabis et al., 2017).

In the following section, we provide a high-level overview
of LatentSLAM, which is also treated in greater detail in (Çatal
et al., 2021a,b). While we believe many of these technical
details may be relevant for explaining fundamental aspects of
high-level cognition, a more qualitative understanding of this
content should be sufficient for considering the conceptual
mappings we (begin to) explore in this manuscript (Table 1).
Section “The Hippocampal/Entorhinal System (H/E-S)” then
summarizes current views on the H/E-S and its functioning
in relation to spatial modeling and cognition more generally.
Finally, Section “G(eneralized-)SLAM as core cognitive process”
draws parallels between understanding in machines (using
LatentSLAM) and humans (considering the H/E-S) and propose
G-SLAM as a unification framework for cognitive science and
artificial intelligence.

We realize that this may be a challenging manuscript for
many readers, with some portions focused on describing
a robotics perspective, and other portions focused on

cognitive/systems neuroscience. Indeed, this article emerged
from an ongoing collaboration between roboticists and
a cognitive/systems neuroscientist, which has been both
rewarding and challenging in ways that demonstrate why
this kind of interdisciplinary work is both desirable and
difficult. One of our primary goals for this manuscript
is to provide a rough-but-useful conceptual scaffolding
(i.e., an initial partial map) for those who would attempt
such cross-domain research. In this way, interested readers
ought not be overly concerned if some of the content is
found to be excessively technical relative to their particular
background. However, we believe readers who follow
through with exploring these suggested mappings (which
we only begin to characterize) may be richly rewarded for
those efforts.

In brief, G-SLAM can be summarized as follows:

1. It is increasingly recognized that the H/E-S may be the key
to understanding high-level cognition.

2. Within the field of robotics, the H/E-S has been identified
as having been shaped by evolution for the problem
of simultaneous localization and mapping (SLAM) for
foraging animals, and where these capacities appear to have
been repurposed for navigating through other seemingly
non-spatial domains.

3. We believe it would be fruitful to explicitly think of the core
functionalities of SLAM systems and test whether these
are not just reflected in the functioning of the H/E-S with
respect to physical navigation, but with respect to other
high-level cognitive processes as well.

If the H/E-S is the kind of gateway to high-level cognition
that it is increasingly suggested to be (Evans and Burgess, 2020;
George et al., 2021; McNamee et al., 2021), and if it can be
well-modeled as having been selected for SLAM functionalities
that were later repurposed, then we believe the difficulty of
exploring the following material will more than repay the effort
of attempting to make the journey. We also ask readers to note
places where spatial language can be found, only some of which
was intentional. Indeed, we take such linguistic spatializations
as supporting evidence for the G-SLAM perspective, which
perhaps may be overlooked by virtue of its very ubiquity (cf. fish
not noticing water). This is not to say that all spatial cognition
points to a SLAM perspective. Yet we believe such spatial
mappings are notable in affording opportunities for localization
and mapping with respect to such domains. We leave it up to
the discernment of our readers to assess how far one can go
with following such paths through conceptual spaces, which
may not only provide new perspectives on familiar territories
on minds, but may even make inroads into discovering how we
may follow similar paths to the destination of creating artificial
systems with capacities that were formerly considered to be
uniquely human.
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TABLE 1 Potential correspondences between LatentSLAM, cognitive psychological, and bio-computational phenomena.

LatentSLAM Cognitive-psychological processes Bio-computational processes

Mapping/graphing: Inferring dimensions of feature spaces and relative locations
of phenomena based on observations

Relations between hippocampal place cells for particular
locations combined with entorhinal grid cells for
multi-scale metric-affordance information

Localization: Positioning specific phenomena (including the mapping
and localizing system itself) within inferred feature spaces

Conjunction of hippocampal/entorhinal place/grid cells for
positioning specific events within maps/graphs

Sensor and actuator uncertainty: Perceptual (including mnemonic and imaginative)
ambiguity

Body and world states are indirectly inferred based on
partial information from noisy signaling systems

Views: Visuospatial perception (as a function of actions) Information from ventral and dorsal visual streams (and
other modalities) organized according to egocentric
perspectival reference frames (via posterior midline
structures)

Proprioceptive poses: Somatospatial perception (as a function of actions) Frontal-parietal hierarchies over the somatomotor strip,
with modeling/control potentially enhanced via explicit
mapping of lateral parietal body schemas by other systems
(e.g., midline structures coupling with the H/E-S)

Experience-map: Structuring of episodic memory and imagination both
informed by and informing visuospatial and somatospatial
modalities

Transitions between hippocampal place fields entailing
spatiotemporal trajectories for organisms (potentially
including trajectories for important effector/sensor systems
such as eyes and hands), both entrained by and entraining
largescale cortical attracting states

Spatial landmark graphs: Consciously-accessible representations of (salience-biased)
spatial relations, potentially constituting our sense of space;
semantic content of graph is based on actions and
corresponding sensations as paths are traversed
across/through these nodes

Hippocampal place fields as chained attractors, mutually
entrained with cortex to orchestrate attracting states for
population activity along reduced-dimensionality
manifolds for both overt and covert action-perception
cycles at and between these locations

Hierarchical generative model: The processes by which a coherent stream of experience is
generated and remembered with respect to both action and
perception

A functional and algorithmic understanding of the brain as
a hybrid machine learning architecture for predictive
control of an embodied-environmentally-embedded agent

Fisher information metric: The amount of information gained when traveling along a
trajectory given a probabilistic generative model, wherein
autonomous functioning is realized by minimizing
discrepancies between predicted goal and present estimated
states (via active inference); with respect to structure
learning, the amount of “cognitive work” required to make
sense of a domain

The amount of neural activity that must be expended to
achieve adaptive cybernetic functioning in a given context,
including with respect to constructing and refining world
models entailed by patterns of effective connectivity

Accumulation of map uncertainty: Deviations between models and that which is represented
due to uncertainty with respect to cognition and latent
world states

Deviations between likely patterns of neuronal attractor
dynamics and their ability to orchestrate either overt or
covert action-perception cycles (i.e., behaving or
imagining) for autonomous functioning; cybernetic (and
potentially thermodynamic) entropy for nervous systems

Loop-closures: Events in which a familiar location in feature space is
encountered with high confidence

High degrees of converging mutually consistent activity
from the H/E-S and non-H/E systems

Graph-relaxation: Assimilation of novel information into existing schemas via
iterated distribution of updates across interconnected
cognitive structures

Updating connectivity patterns to influence relative
positioning of hippocampal place fields, potentially
accompanied by largescale reductions in Hopfield energy

Node creation: Accommodation of novel information via altering the
structure of cognitive maps/graphs, potentially resulting in
major updates to internal working (world) models with
novel concepts

Creation of new place fields, involving various forms of
(potentially neuromodulator-dependent) hippocampal
plasticity, and/or establishment of new prefrontal attractors
(i.e., patterns of canalized striatal-cortical loops)

Navigation: Setting destinations in generalized space, which function as
sources of prediction-error to be minimized through active
inference; this may apply to the organism as a whole
moving through (generalized) space, or to trajectories for
parts of a system for which specific intentional control is
warranted (e.g., directed ocular foveations or
grasping/pointing movements), including with respect to
spaces of a conceptual variety (e.g., spatialized time)

Predictive sweeps of activity across place fields from
hippocampal maps (cf. successor representations), which
can orchestrate largescale cortical attracting states (cf.
equilibrium points) and thereby drive both system-internal
self-organization (i.e., perceptual inference, imagination,
and learning) and overt enaction, which in turn creates new
sources of information to shape subsequent H/E-S
dynamics

Please note, these cross-domain mappings are neither meant to be exhaustive nor definitive, but are instead intended to point in the direction of what a G-SLAM perspective
might look like if more fully developed.

LatentSLAM, a bio-inspired SLAM
algorithm

Simultaneous localization and mapping (SLAM) has been
a long standing challenge in the robotics community (Cadena

et al., 2016). For autonomous functioning, a robot must try
to map its environment whilst trying to localize itself in
the map it is simultaneously constructing (i.e., SLAM). This
setup creates a kind of “chicken and egg” problem in that
a well-developed map is required for precise localization,
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but accurate location estimation is also required for knowing
how to develop the map by which locality is estimated. This
challenge is rendered even more difficult in that not only
must the system deal with the seemingly ill-posed problem just
described, but the inherent ambiguity of the environment is
made even more difficult by sources of uncertainty from sensors
and actuators. A fundamental challenge (and opportunity)
with localizing and mapping is the detection of loop-closures:
i.e., knowing when the robot re-encounters a location it
has already visited. The challenge is due to the circular
inference problems just described, and the opportunity is due
to the particularly valuable occasion for updating afforded
by the system having a reliable reference point in space.
Such loop-closures have a further functional significance in
allowing experiences to be bound together into a unified
representational system where updates can be propagated in
a mutually-constrained wholistic fashion, so providing a basis
for the rapid and flexible construction and refinement of
knowledge structures in the form of cognitive schemas that
have both graph-like and map-like properties. With further
experience, these schemata can then be transferred to the
neocortex in the form of more stable adaptive action and
thought tendencies, so forming a powerful hybrid architecture
for instantiating robust causal world models (Hafner et al., 2020;
Safron, 2021b).

SLAM has traditionally been tackled by Bayesian integration
of sensor information within a metric map, typically expressed
in terms of absolute distances and angles. In previous work, this
amounted to keeping track of distances between the robot and
various landmarks in the environment. Distance measurements
were typically combined through Bayesian filtering, a principled
way of combining heterogenous information sources through
Bayesian inference. Modern successful metric SLAM solutions,
however, combine lidar scans with the robots internal odometry
estimate through Kalman filtering (Kalman and Bucy, 1961) into
2D or 3D occupancy grid maps (Mur-Artal et al., 2015; Hess
et al., 2016). These occupancy maps (Figures 1B,C) keep track
of locations of objects in the environment by rasterizing space
and then marking certain grid locations as inaccessible—due to
being occupied with physical obstructions—so creating a map
that resembles what an architect would create to diagram a room
(Figure 1A).

Variations on this scheme are popular and differ wildly,
either substituting the integration algorithm or the type of
metric map. A metric map is akin to a Cartesian grid with
regular spacings. However, such spatial maps do not speak
to the object identities within the space of interest, nor the
particular relations between those objects. Thus, one of the
downsides of using metric maps is that by extension all
robotic reasoning must also happen on a metric level, any
semantic information (i.e., the meaning of a certain cluster of
grid-cell activations) needs to be added in later. Further, such
metric spaces represent an instance of deviating from natural

designs, as hippocampal/entorhinal system (H/E-S) mappings
are not independent of the objects contained within these
spaces, but instead induce distortions (e.g., expansions and
compressions) of spatial relations, which are also modulated as
a function of the salience of these entities for the organism/agent
(Bellmund et al., 2019; Boccara et al., 2019; Butler et al.,
2019).

Popular approaches for such spatiotemporal modeling
use particle filters or extended Kalman filters as Bayesian
integration methods (Thrun et al., 2005). Kalman filters
are notable in that they allow for estimation based on a
precision-weighted combination of probabilistic data sources,
so allowing for synergistic power in inference and updating,
which is also theoretically optimal in making use of all
available data (weighted by relative certainty). As will be
discussed in greater detail below, such integration may be
implemented in the H/E-S via convergent activation in
regions supporting high degrees of recurrent processing, such
as the CA3 subfield of the hippocampus. However, not
only does the H/E-S promote integrative estimation, but
also pattern separation/differentiation via other subregions
such as CA1, so allowing for attractors to take the form
of sparsely-connected graphs—cf. hybrid continuous/discrete
architectures based on Forney factor graphs and agent-designs
based on independently controllable factors (Friston et al.,
2017b; Thomas et al., 2017, 2018). Below we will also
describe how such graph-like representations not only help
to solve problems in navigating through physical spaces,
but may also form a basis for the kinds of high-level
cognition sought after in the domain of neurosymbolic AI
(Bengio, 2017).

We do not internally represent the world in a metric map.
For instance, none of our senses can naturally give us an
accurate distance measurement. Neither are we very effective
in following a metric description of a path. Hence, it makes
more sense for minds like ours (and potentially for artificial
agents) to represent a map intuitively as a graph-like structure
(Figure 1D), where subsequent graph-nodes could represent
subsequent high-level parts of the environment e.g., a node could
represent a part of the environment containing a door at a
certain rough location. Map traversal then becomes equivalent
to the potentially more intuitive problem of graph-traversal
or navigating between meaningful landmarks. Trajectories
can then be expressed in terms of consecutive semantically
meaningful directions. For example, the metrical path “move
forwards 2 meters, turn 90 degrees clockwise and continue
for 2 meters” could become “after going through the door go
right towards the table.” (Note: in vertebrate nervous systems,
such forms of navigation could either be based on H/E-
S graphs/maps, or occur via canalized striatocortical loops
implicitly mapping states to actions, possibly with functional
synergy, and also enhanced robustness (and thereby learnability)
via degeneracy/redundancy.)
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FIGURE 1

An overview of different map types, show-casing our robotics lab. Panel (A) gives an exact metric view of the room as drawn by an architect.
Panel (B) shows the same map as a 2D grid map, to create this map from panel (A) the map was rasterized and untraversable terrain was filled
into the granularity of a single raster cell. Pabel (C) shows the same room as an x, y, z mapping of red/green/blue values extracted from a RGBD
camera. This 3D grid map was generated by moving the camera through the physical lab. Finally, panel (D) shows the lab as a sparse graph.

In LatentSLAM (Çatal et al., 2021a), we proposed a
bio-inspired SLAM algorithm which tries to mimic this kind of
intuitive mapping. With this architecture, we built topological,
graph-based maps on top of a predictive model of the world,
so allowing for separation of the low-level metric actions of the
robot and high-level salient paths. Instead of using raw sensory
data—or fixed features thereof (Milford et al., 2004)—directly
as node representations, LatentSLAM learns compact state
representations conditioned on the robot’s actions, which are
then used as nodes. This latent representation gives rise to
a probabilistic belief space that allows for Bayesian reasoning
over environmental states. Graph nodes are formed from
trajectories on manifolds formed by belief distributions. That is,
rather than utilizing static maps, our agents navigate through
space by moving between landmarks based on expectations of
which state transitions are likely to be associated with those
kinds of percepts. As an underlying foundation, LatentSLAM
adopts the Free Energy Principle and Active Inference (FEP-
AI) framework to unify perception (i.e., localization), learning
(i.e., map building) and action (i.e., navigation) as a consequence
of the agent optimizing one sole objective: minimizing its
(expected) free energy (Friston, 2010; Friston et al., 2017a).
As will be described in greater detail below, we believe this is
an apt description of thinking as the unfolding of a stream of
consciousness, with a variety of somatic states being generated in
various combinations as the agent perceives and imagines itself
moving through space and time.

Representing the world in a graph

Graphs form a natural way of representing relations between
various sources of information in a sparse and easily traversable
manner. In LatentSLAM, such a structure is used to build
a high-level map from agent experiences. This experience
map contains nodes consisting of a pose, i.e., the agent’s
proprioceptive information, and a view distilled from the
sensory inputs. Together, the pose and view of an agent specify
its unique experience: a different view in the same pose gives
rise to a new experience; likewise, the same view from a different
pose also constitutes a novel experience. Views generally lie on
some learned compact manifold as a compressed version of
one or more sensory inputs, integrated and updated through
time. Links between experiences in the graph indicate possible
transitions between one experience and another.

Figure 2 provides a visual overview of how poses and
views combine into an integrated experience map. The pose
information allows the agent to embed the graph relative to
the geometrical layout of the environment. In this case, the
embedding is done in 2D-Cartesian space as the example shows
a ground based, velocity-controlled mobile robot. Embedding
the graph in a reference frame correlated with environment
characteristics organizes observations in ways that greatly
enhance inferential power, since this avoids combinatorial
explosions with respect to under-constrained hypothesis spaces.
That is, a given sensory impression could correspond to an
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FIGURE 2

The formation of an experience-map out of views and
proprioceptive poses. Sensory observations first need to be
integrated into views to be compared to existing experiences
from the graph. The shown graph is embedded in a Cartesian
reference frame extracted from the proprioceptive information.

unbounded number of world states (e.g., something may be big
and far away, or small and nearby), but coherent perspectival
reference frames allow for likely causes to be inferred by
mutually-constraining relevant contextual factors.

Experience map

The experience map (or graph) provides a high-level
overview of the environment. Each node in the map represents a
location in the physical world where the robot encountered some
interesting or novel experience. These positions are encoded in
poses in a spatial reference frame, e.g., a 2D-Cartesian space,
whilst the experiences themselves are expressed as implicit
representations of corresponding sensory observations. When
view representations change according to distances to known
landmarks, this setup resembles the approach described in
the classical graphSLAM algorithm (Thrun and Montemerlo,
2006). Note that the seminal work on graph-based experience
maps (Milford et al., 2004) also used an embedding of sensory
observations into a lower dimensional space. However, in
contrast to our approach, these mappings were deterministic and
fixed for all observations.

The graph is embedded in, as opposed to being expressed in,
a spatiotemporal reference frame, meaning that over time stored
(or inferred) poses on the map are likely to exhibit deviations
from their initial recorded values as they are progressively
updated. Loop-closure events trigger a graph-relaxation phase
wherein current graph nodes are re-positioned to take into
account the unique opportunity accompanying the closing
of the loop (i.e., the creation of a closed system of node
linkages allowing for updating of the entire graph through

energy minimization, accompanied by more confident location-
estimation through experience-trajectory converging on known
landmarks). This relaxation not only affords opportunities for
map refinement, but it is also necessary due to the accumulation
in pose errors from odometry drift. Wheel slippage, actuator
encoder errors, and other similar effects amount to a continual
increase in the uncertainty of the pose estimate. These sources
of error/noise are part of what makes loop-closure such a hard
problem in general. However, the loose embedding of pose
information in the graph (combined with associated views)
allows the map building to become robust to sensor and actuator
drift, thereby maintaining a consistent map of the environment.

Views

LatentSLAM probabilistically learns views from sensory
observations by incorporating the action trajectories from which
they are generated, which differentiates our architecture from
similar algorithms (Milford et al., 2004). The agent keeps track
of a sample of the current belief distribution over states, which
gets updated at each time-step into a new belief through
variational inference. This sample constitutes either the current
agent view, or a sensory-decoupled (or imagined) estimate of
the environment from the latent space of the agent’s generative
model. At each time-step, the agent inputs a conjunction of
the current action, sample, and current observation into its
generative model. This world model then generates a new state
belief distribution based on the current state sample, which
functions as a source of predictions for a predictive coding
perceptual architecture. At training time, the generative model
is tasked with predicting future observations based on previous
recordings of trajectories through the environment.

Proprioception

An agent needs a principled way of keeping track of its
estimated pose in the local environment. That is, an agent needs
a coherent way to integrate changes in its local pose according
to some local reference frame. In this form of proprioception,
agents can estimate the effects of certain actions on local pose
information relative to adjacent portions of its environment.
This aspect of embodiment is essential in enabling consistent
mapping and localization through challenging terrains.

In LatentSLAM this is handled through the low-level
generative model on the one hand, and the pose continuous
attractor network (CAN) on the other hand. The generative
model allows for reasoning in terms of how actions affect views:
i.e., it reduces the pose to an implicit part of the latent state
representation. The CAN, however, leaves pose estimation as
an explicit part of the greater LatentSLAM model. It integrates
successive pose estimates through time in a multidimensional
grid representing the agent in terms of internally measurable
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quantities. In the case of a ground-based mobile robot these
quantities would be the expected difference in x,y pose and
relative rotation of the robot over the z-axis. Hence, for a ground-
based robot the CAN would be expressed as a 3D grid, that
wraps around its edges. Sufficiently large displacements along
the x-axis of this grid would teleport the pose estimate back
to the negative bound of the same axis. This to accommodate
for traversing spaces that are larger than the number of grid
cells in the CAN. The pose estimate in the CAN is represented
as an activation per grid cell, the value of which determines
the amount of belief the model gives to the robot being in
this exact relative pose. Multiple grid cell locations can be
active at any given time, indicating varying beliefs over multiple
hypotheses. The highest activated cell indicates the current most
likely pose. Cell activity is generated in two ways: activity is
added (or subtracted) to a cell through motion and the current
proprioceptive translation thereof in terms of grid-cell entries;
alternatively, activity may be modified through view-cell linkage.
When a view is sufficiently different from others it gets added to
the experience map together with the current most likely pose.
This mechanism in turn allows experiences, when encountered,
to add activation into the CAN at the stored pose estimate. This
process can shift, and often correct, the internal pose estimate of
the agent, allowing it to compensate for proprioceptive drift.

This conjunction of views and poses has notable parallels
with neural representations decoded from respective lateral
and medial entorhinal cortices (Wang C. et al., 2018), which
constitute the predominant source of information for the
hippocampal system (i.e., the experience map). It is also
striking that the self-wrapping representational format for
LatentSLAM poses/views recapitulates the repeated metric-
spacing observed for entorhinal grid cells, whose location
invariance may potentially provide a basis for knowledge-
generalization and transitive inference across learning epochs
and domains (Whittington et al., 2022). We believe that such
correspondences between naturally and artificially “designed”
systems constitutes strong evidence in support of a SLAM
perspective for understanding the H/E-S.

A hierarchical generative model

The entirety of the LatentSLAM framework can be
understood mathematically in terms of a hierarchical generative
model (Figure 3; Çatal et al., 2021b).

There are two distinct levels of reasoning, each using
their own generative model to explain the dynamics of the
environment at the corresponding level of abstraction. As
the generative models are stacked, the higher-level model
takes the states from the lower level as observations, while
the lower level observes the actual environment through
the agents’ sensors. Each separate generative model can
be seen mathematically as representing the joint probability

p(õ, s̃, ã) = p(a0)p(s0)p(o0|s0)
∏T

t = 1 p(st|st − 1, at − 1)p(ot|st),
with o relevant observations at each level; s state description,
views or locations; and a possible actions at each level (either
displacements in the environment or node transitions). These
models only consider the generative process up until some future
time horizon T. The exact instantiation of the joint probability
and corresponding posterior distributions differ between each
level of the hierarchy; interested readers are referred to Çatal
et al. (2021b) for a more thorough description of this kind of
model, and some extra details are provided in the “Appendix”.

Action and state inference, that is finding suitable
instantiations of the posteriors p(at|st) and p(st|st − 1, ot , at − 1)

is achieved through Active Inference as understood in the
context of the Free Energy Principle (FEP-AI; Friston et al.,
2017a). In FEP-AI, intelligent agents are governed by predictive
models that attempt to minimize variational free energy through
updating of internal beliefs and modification of external states
through enaction (hence, active inference). When implementing
similar mechanisms in artificial agents such as robots, inference
is amortized—cf. planning as inference via memorization of
successful policies (Gershman and Goodman, 2014; Dasgupta
et al., 2018)—through training variational auto-encoders
(VAEs) with objective functionals that minimize (variational)
free energy. The model consists of three neural networks, with
each representing a conditioned probability distribution that
outputs different multivariate Gaussian distributions based on
differing inputs. These inputs can take the form of different
sensor modalities such as lidar or camera; or they might be
actions depending on the flow of information between neural
networks.

State inference emerges naturally from the neural network
architecture and training method. Active inference, however,
leverages the trained network to create a set of imaginary
trajectories from which optimal action sequences can be selected
through expected free energy minimization. The model is
trained on a free-energy objective functional, wherein it is
tasked with minimizing Bayesian surprise—in the form of KL
divergence—between prior and posterior estimates on the state.
In this hierarchical generative model, there are two sources of
information flowing in two directions at any given time. Sensory
observations flow upwards from the real world through the
lower-level pose-view model towards the higher-level mapping
model. Predictions flow in the opposite direction, originating
in the higher-level mapping model and flowing down into the
environment through the predicted actions in the lower-level
pose-view model.

Bottom-up sensory streams

The agent observes the world through sensors as it moves
around the environment. At the lower-level of the generative
model, the agent actively tries to predict future incoming sensory
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FIGURE 3

Overview of the hierarchical generative model. Highlighted in blue is the bottom-up sensory stream, and in pink the top-down prediction stream.
As the agent moves about, it alternates between these two modes. On the one hand it will infer state information from the observations, and on
the other hand it will predict future observations from inferred states.

observations (Figure 3, blue arrow indicating informational
flow). The agent actively abstracts away distractor elements in
the observations as every observation gets encoded into a latent
vector (i.e., views). As this encoding is generated from actions,
observations and the previous latent state, the model considers
the effects that history and actuation (or enaction) have on the
environment. The abstracted view then gets fed into the higher-
level mapping model which actively predicts the next experience
from the previous one, taking into account the way the agent is
presently traversing the experience graph and its current view.

Top-down prediction streams

At the same time, decisions flow down from the higher-level
to the lower-level of the generative model (Figure 3, red arrow
indicating informational flow). As a new navigational goal is set,
the desired trajectory through the experience map is generated.
Each node transition denotes one or more displacements in the
real environment. While traversing the graph, the agent sets

the views associated with the visited nodes as planning targets
for the lower-level model. At the hierarchically higher level, the
agent samples multiple state estimates from the current belief
distribution over states and leverages the predictive capabilities
of the generative model to envision possible outcomes up until
some fixed planning horizon (Friston et al., 2021). From all
these imagined future outcomes, the optimal one is selected after
which the process repeats itself until the target view and pose
are met. In turn the next node in the map trajectory is used to
generate a new lower-level planning target.

Creating the map

As mentioned earlier, once an agent encounters a sufficiently
different experience, a new node is inserted in the experience
map with the current view and pose. This process results in an
ever-growing map of the environment as the agent explores the
world. Hence, there needs to be a principled way to determine
whether a view is new or is already known to the agent. As with
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many such problems, the solution presents itself in the form of
a distance function in some well-defined mathematical space. A
well-chosen distance function will allow the agent to not only
build a consistent map of its environment but also account for
loop-closure events.

Distance functions

Many SLAM algorithms use the Euclidian distance between
poses to determine whether the current observation and pose are
known in the map or represent some novel experience. However,
due to the inherent drift in proprioception in many real-world
scenarios, often this distance metric between poses and/or
observations is not enough. Alternatives present themselves
depending on the form of the probabilistic framework upon
which the algorithm is based.

As described in Section “A hierarchical generative model”,
LatentSLAM learns a latent state space manifold over sensory
inputs (i.e., camera images). This enables the agent to not
only evaluate Euclidian distances between poses, but also
distances between two sensory inputs in the latent statistical
manifold. To evaluate distances inside the manifold we need
an appropriate distance measure. One notable candidate is
the Fisher information metric (Costa et al., 2015), which
represents informational differences between measurements.
In our context, this means that two measurements are only
encoded in different nodes of the experience map when there
is sufficiently more information in one compared to the other.
For example, moving in a long, white hallway with little texture
will not yield a change in information in the latent manifold,
hence this will be mapped on a single experience node. Only
when a salient feature appears, for example a door, there will be
enough sensory information to encode a new experience. In such
a scenario however, methods building a metric map will likely
fail as it is impossible to accurately track one’s position in a long,
textureless hallway.

Note how the Fisher information metric is also related to the
free energy minimization objective used for manifold learning.
Concretely, if we take KL[x||x+ δx] with x a probability
distribution and x+ δx a distribution close to x we get that if
δx→ 0 then KL[x||x+ δx] → 1

2 F(x)(δx)2. In other words, for
infinitesimally small differences between distributions the KL
divergence approaches the Fisher information metric (Kullback,
1959). This can be interpreted as integrating the agent’s
Bayesian surprise over infinitesimal timesteps to measure the
“information distance” traveled.

However, since the Fisher information metric and KL
divergence do not have closed form solutions for many types of
probability distributions, we use cosine similarity between the
modes of the distribution as a numerical stable approximation
function. Therefore, LatentSLAM evaluates information

differences between experiences instead of differences in exact
environmental observations.

Node creation and loop-closures

When a salient landmark is identified, but the agent cannot
find a single node in the graph which matches closely enough
with the current view or pose, a new node must be inserted in the
graph. Alternatively, if the current experience matches both on
pose and view, a loop-closure is registered, but the agent leaves
the map as is. In order to determine whether two experiences
match, LatentSLAM uses a matching threshold θ. Both the pose
and view of an experience is matched to experiences stored
in the map. Figure 4 gives a visual overview of the various
possible matching cases. If neither view nor pose match with
any possible stored view or pose, a new experience is created
and inserted into the map, as is shown in panel A. When the
view and the pose both match, a loop-closure has occurred
and the current experiences shifts to the stored experience, at
which point a graph-relaxation phase is initiated. If the current
observed experience matches with a stored experience further
along the path, a relocation is required, and the estimate is
shifted further along the path in the graph. Finally, if the current
pose estimate matches a stored experiences pose, but does not
find the corresponding matching view, a new node is inserted at
the same location. This allows the agent to keep track of varying
views of the same landmark throughout the map.

Graph-relaxation

As nodes are inserted throughout the graph, each new pose
observation is subjected to sensor drift, leading to increasing
errors for remembered poses. To address this issue, whenever
a loop-closure event is encountered, graph-relaxation is applied
to the experience graph. The algorithm treats every node in the
graph as being connected with its neighbors as if suspended
by weighted springs. The strength of each spring is related
to the pose distances between the nodes. Then the algorithm
reduces the total “energy content” of the graph by shifting the
poses in such a way that the sum of the forces is minimized.
This approach is similar to graph-relaxation in similar SLAM
algorithms (Thrun et al., 2005; Thrun and Montemerlo, 2006).
Graph-relaxation has the effect of morphing the shape of the
pose embedding of the map to reflect the actual topology of the
environment.

Setting the threshold

Because the matching threshold has a significant impact on
the shape and content of the map, it is one of the more important
hyper parameters of LatentSLAM. For every environment there
is an optimally tuned threshold parameter θ?. A matching
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FIGURE 4

Different cases for illustrating the map updating procedure. For each case we show the map (top), pose (bottom right), and views (bottom left)
in their own respective spaces. The current active map node is always indicated in red and the current pose or view value is the final one in the
sequence. In case (A), the agent encounters a new experience which is not within the threshold boundary of both the poses and views, so a new
node is inserted into the map. Case (B) demonstrates a loop-closure event, where both the pose and view are within their respective thresholds,
blue indicating the area pose information demarcated by its threshold θ, pink indicating the area covered by the view threshold. If both view and
pose are within the threshold boundary (blue and pink) of the next node (case C), the estimate is shifted to the next node, skipping the current
node in the graph. Finally, case (D) shows a matching pose without a matching view, requiring a new node insertion in the map.

threshold much lower than this optimal value will result in a
mapping procedure with almost no loop-closure events. The
map will contain every tiny permutation in views and poses as
a separate node and will be insufficient in countering odometry
drift. Conversely, if the threshold is set much higher than θ?,
the mapping procedure will lump everything together in a small
cluster of nodes. Figure 5 provides a visual example of the effects
of the matching threshold on the resulting map.

Navigation

Navigation is achieved through a dual process of first
selecting nodes in the higher-level experience map, and then
setting the node-views as targets for the active inference
based lower-level action planner. In the first phase a path is
generated through the graph connecting the current node and
the target node. The final node is selected based on the visual
reconstruction of the stored view. That is, the user of the system
selects the view they want the system to have at a certain place.
Once an experience trajectory is found, the agent can start acting
in the environment. As each consecutive experience node is
separated from its neighbors by a finite set of actions, a sequence
of target views are extracted from the trajectory, forming the
imaginary trajectory the agent may (approximately) bring about
through overt enaction. The (active inference based) lower-
level generative model is then capable of filling in further gaps
between imagination and reality through additional planning.

At each step, the agent takes into account its current
view and imagined trajectory up until the next target view.
This imagination process leverages the learned intricacies and
dynamics of the environment to compensate for the potential
stochasticity in the interaction. Once a suitable trajectory
is imagined at the higher-level, the agent enacts the first
step of the trajectory, after which the lower-level planning
process is repeated. These step-by-step transitions through the

environment make the agent more robust against unexpected
changes in the environment, which it might not have captured
during model training.

Crucially, imagined trajectories are scored using a common
objective functional of expected free energy, both on the higher
level of proposed paths through the experience map/graph,
as well as on the lower level of inferring actions capable of
transitioning the agent between nodes (Çatal et al., 2021b).
That is, trajectories are more likely to be selected if they
bring the agent towards preferred outcomes and/or resolve
uncertainty about the environment. Hence, action selection
comprises a trade-off between instrumental value and epistemic
value, which are naturally balanced according to a singular
criterion of variational free energy. To provide an example in
navigation, this tradeoff between the extrinsic value of realizing
prior preferences and the intrinsic value of novel information
could respectively manifest as either selecting a safer route via
well-recognized landmarks or instead taking an unknown (but
potentially shorter) path through a dark forest. Further, the
discovery of such shortcut paths through space speaks to the
kinds of flexible inference and learning that first motivated
construals of the hippocampal system in terms of cognitive maps
(Tolman, 1948), and in a G-SLAM context could be thought
of as a way of understanding a core aspect of intelligence in
the form of creative insight. And in the context of AI, such
creative cognition may afford the creation of much sought after
capacities for powerful inferences and one-shot learning in novel
situations, which if realized could greatly enhance autonomous
functioning.

Limitations and future directions

There are several limitations with the current
implementation of LatentSLAM. First, the experience
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FIGURE 5

(A) Metric map of our lab environment, with some example camera views at the marked locations. The views at different locations (i.e., 3 and
5 or 1 and 4) appear very similar, making this a hard environment for visual SLAM. Panels (B–D) show three possible mappings of the trajectory
shown in red in panel (A). (B) With a well-tuned threshold θ?, our LatentSLAM algorithm recovers a topological map of the environment, clearly
separating the four different aisles. (C) If the threshold is too stringent (θ � θ?), loop-closure events are not detected, as every view is seen as
unique, and the map becomes incorrect as proprioception errors (the main source of mapping errors) add up. (D) When the threshold is too
relaxed (θ � θ?), similar looking aisles are mapped onto each other due to false positive loop-closures.

graph is incapable of merging nodes with similar views
and approximately similar poses into a single unified stochastic
node. This in turn leads the algorithm to generate an increasing
number of nodes for each pass through a single location.
Second, the lower-level planning is limited to the sequence
length encountered during training, and as such the model is
incapable of imagining coherent outcomes beyond this time
horizon. This brings us to a potentially substantial limitation of
LatentSLAM, in that the lower-level generative model needs to
be pre-trained on the types of observations it can encounter in
the environment. That is, when the target views are unknown,
imaginative planning may be required wherein agents visualize
an assortment of potentially rewarding (counterfactual) action-
outcome pairings. Going forward, we aim to alleviate these
constraints by adapting the training procedure to accommodate
online learning, allowing the agent to learn to imagine whilst
exploring (Safron and Sheikhbahaee, 2021), which may be
understood as a kind of deep tree search through policy space
via Markov chain Monte Carlo sampling (Dohmatob et al.,
2020; Friston et al., 2021), with potentially relevant insights
obtainable from advances in Bayesian meta-reinforcement
learning (Schmidhuber, 2020).

To extend the biological fidelity (and potential functional
capacities) of our architecture, we intend on attempting to
recapitulate particular empirical phenomena such as the specific
conditions under which new place fields are introduced or
pruned away in mammalian nervous systems. For example,
the insertion of environmental barriers or encountering
corridors leading to identical rooms may induce duplication
of sensory views at different locations, which may speak
to the phenomenon of place-field duplication—which in a
LatentSLAM context would involve node creation (Lever et al.,
2009; Spiers et al., 2015)—yet where these representations may
also disappear with further learning. This kind of pruning

of nodes—potentially involving “artificial sleep”—could be a
valuable addition to latent SLAM’s functionality, and may
potentially be understood as an instance of Bayesian model
reduction with respect to structure learning (Friston et al., 2019),
so providing another means by which capacities for creative
insight (in terms of discovering more elegant models) may be
realized in AI.

With respect to these particular phenomena involving
challenging ambiguous situations, we may speculate that highly-
similar-but-subtly-different pose/experience map combinations
could represent instances associated with high levels of
prediction-error generation due to a combination of highly
precise priors and contradictory information. Speculatively, this
could be understood as an example of “hard negative mining”
from a contrastive learning perspective (Mazzaglia et al., 2022).
As will be described in greater detail below, such highly
surprising events may be similar to experiences of doorway
or threshold crossing, and may trigger the establishment
of event-boundaries via frame-resetting and spatial-retiling.
Speculatively, the assignment of particular content to particular
rooms in “memory palaces” could be understood as a necessary
part of the art of remembering due to this phenomenon
potentially interfering with semantic “chunking” (or coherent
co-grounding). In attempting to apply LatentSLAM to cognition
more generally, it could potentially be fruitful to look for
generalizations of these phenomena with respect to seemingly
non-spatial domains, such as with respect to creativity and
insight learning problems in human and non-human animals.

Finally, and with further relevance to realizing capacities
for imaginative planning and creative cognition, we will
attempt to include phenomena such as sharp-wave ripples
and forward/reverse replay across hippocampal place fields
(Ambrose et al., 2016; de la Prida, 2020; Higgins et al., 2020;
Igata et al., 2020), which have been suggested to form a
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means of efficient structural inference over cognitive graphs
(Evans and Burgess, 2020). With respect to our goal-seeking
agents, forward replay may potentially help to infer (and
prioritize) imagined (goal-oriented) trajectories, and reverse
replay may potentially help with: (a) back-chaining from
goals; (b) increasing the robustness of entailed policies via
regularization, and (speculatively), and (c) allowing for a
punishment mechanism via inverted orderings with respect to
spike-timing-dependent-plasticity. In these ways, not only may a
G-SLAM approach allow for deeper understanding of aspects of
biological functioning, but attempting to reverse engineer such
properties in artificial systems may provide potentially major
advances in the development of abiotic autonomous machines.

The hippocampal/entorhinal system
(H/E-S)

The hippocampal/entorhinal system (H/E-S) represents a
major transition in evolution (Gray and McNaughton, 2003;
Striedter, 2004), with homologs between avian and mammalian
species suggesting its functionality becoming established at least
300 million years ago (Suryanarayana et al., 2020), with some
of its origins potentially traceable to over 500 million years in
the past with the Cambrian explosion (Feinberg and Mallatt,
2013), and potentially even earlier. It may be no overstatement
to suggest that the H/E-S represents the core of autonomy
and cognition in the vertebrate nervous system, with similar
organizational principles enabling the potentially surprising
degrees of intelligence exhibited by insects (Ai et al., 2019;
Honkanen et al., 2019).

While their precise functional roles continue to be debated,
the discovery of hippocampal place cells and entorhinal grid
cells was a major advance in our understanding of how space is
represented in the brain (O’Keefe and Nadel, 1978; Hafting et al.,
2005). Similarly important was the discovery of head direction
cells in rats, which were found to activate according to moment-
to-moment changes in head direction (Sharp PE, 2001). Place
cells have been modeled as representing a “predictive map”
based on “successor representations” of likely state transitions
for the organism (Stachenfeld et al., 2017), and grid cells have
been understood as linking these graphs (or Markov chains)
to particular events happening within a flexible (multi-level)
metric tiling of space, so allowing for estimates of locations via
path integration over trajectories. While we need not resolve the
precise correspondences between these cell types here, there are
intriguing developmental observations of place cells acquiring
more mature functioning prior to grid cells, both of which
likely depend on head-direction cells for their emergence (Canto
et al., 2019; Mulders et al., 2021). In other contexts, place-
specific cells have been found to index temporal sequence
information, potentially functioning as “time cells” (Pastalkova
et al., 2008), so providing a further means by which the H/E-

S may provide foundations for coherent sense-making and
adaptive behavior through the spatiotemporal organization of
organismic information (Eichenbaum, 2014; Umbach et al.,
2020).

In addition to place, time and grid cells, a variety of
additional specialized cell types have been observed in the
H/E-S. While it was previously assumed that these features
represent innate inductive biases (Zador, 2019), increasing
evidence suggests these specialized cell types may arise from
experience-dependent plasticity, including models with similar
architectural principles to the ones described here. In recent
work from DeepMind (Uria et al., 2020), a recurrent system
was used to predict sequences of visual inputs from (the latent
space) of variational autoencoders. A natural mapping from
egocentric information to an allocentric spatial reference frame
was observed, including the induction of specialized units with
response properties similar to head direction, place, band,
landmark, boundary vector, and egocentric boundary cells.
Similar results have been obtained with the Tolman-Eichenbaum
machine (Whittington et al., 2020), including demonstrations
of reliable cell remapping, so enabling transfer learning across
episodes with the potential for the creative (re-)combination
of ideas and inferential synergy. Other intriguing work on the
emergence of specialized H/E-S functions through experience
comes from work on “clone-structured cognitive graphs”, where
various aspects of spatial maps are parsimoniously formed
as efficient (and explanatory) representations of likely state
transitions through the duplication and pruning of nodes
in a dynamically-evolving sequence memory (George et al.,
2021). While this evidence suggests a potentially substantial
amount of experience-dependence in the emergence of the
“zoo” of specialized neurons for spatiotemporal navigation, the
development of these features still involve clear innate inductive
biases (Zador, 2019). Specifically, specialized pathways ensure
that the H/E-S receives neck-stretch-receptor information
from the mamillary bodies and yaw/pitch/roll information
from the vestibular apparatus (Papez, 1937; Wijesinghe et al.,
2015), so providing bases for sensor-orientation with respect
to head-direction and thereby the foundations of egocentric
perspective.

H/E-S as orchestrator of high-level
cognition

While the association of the hippocampus with
autobiographical and declarative memory is well-documented
(MacKay, 2019), the H/E-S is increasingly being recognized
as foundational for cybernetic functioning on multiple
scales. A more thorough understanding of the principles
governing the H/E-S and its interactions with the rest of the
brain may allow us to understand how such sophisticated
cognition and behavior is demonstrated by biological organisms
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(Todd and Gigerenzer, 2012). Even more, such knowledge may
also allow us to find ways of reproducing these functionalities in
artificial intelligences.

The hippocampus is usually described in terms of a
“trisynaptic circuit” (Andersen, 1975), with multiple specialized
subsystems that interact with functional synergy. The dentate
gyrus is the primary input area to the hippocampus from
entorhinal cortex, with densely packed cells for pattern
separation, so allowing for multiple separable/orthogonal
representations. Much of this information then feeds into CA3,
characterized by highly recurrent circuits with tight loops for
dynamic pattern completion. This information is then routed
to CA1, characterized by sparse and stable representations,
representing the primary output area of the hippocampus
and interface with the rest of the brain. Taken together, the
subfields of the hippocampal complex allow multiple sources
of information to be not just independently stored in memory,
but also creatively combined within and across experiences,
so affording powerfully synergistic functionalities such as
transfer learning and generalizable knowledge. Intriguingly,
some evidence suggests that humans might be unique in
exhibiting less pattern separation in their hippocampal subfields,
potentially contributing to—and possibly being a function
of—cognition involving high degrees of abstraction/invariance
(Liashenko et al., 2020; Mok and Love, 2020; Quiroga, 2020).

Indeed, the functional properties enabled by the H/E-S
represent the state of the art in machine learning for real
world applications such as autonomous vehicles and artificial
intelligences attempting to realize higher-order reasoning
abilities (Ball et al., 2013; Bengio, 2017; Hassabis et al., 2017;
Kaplan and Friston, 2018; Shang et al., 2019; Eppe et al.,
2020; Greff et al., 2020; Parascandolo et al., 2020; Shamash
et al., 2020; Friston et al., 2021). This is a bold claim for a
system that might be describable as an association machine
or spatial mapper, which when lesioned tends to leave much
of higher-order intelligence intact. However, closer inspection
of hippocampal patients reveals its essential contributions to
complex reasoning, emotion, and general behavioral flexibility
(MacKay, 2019). It should also be kept in mind that while
someone might be able to maintain certain functions after
losing a system in adulthood—as this functionality may become
distributed throughout the rest of the brain with experience—the
congenital absence of a working H/E-S might be a wholly
different manner, potentially precluding the bootstrapping of
any kind of sophisticated cognition or coherent world modeling
whatsoever (Safron, 2021a). Further, principles of association
may be surprisingly powerful if they are capable of representing
specific relational structures as particular graphs/networks,
which are increasingly being recognized as powerful learning
and inferential systems (Gentner, 2010; Zhou et al., 2019; Crouse
et al., 2020). Some have even suggested that the mapping
abilities of the H/E-S may provide bases for a potential core
functionalities associated with conscious processing in the form

of “unlimited associative learning” (Birch et al., 2020), in which
knowledge may be flexibly aggregated across experiences (Mack
et al., 2018, 2020; Mok and Love, 2019)—cf. transfer and
meta-learning (Wang J. X. et al., 2018; Dasgupta et al., 2019;
Kirsch and Schmidhuber, 2020). The central role of the H/E-S
for higher-order cognition is further understandable in light of
the fact that many (and possibly most) aspects of intelligence can
be described as search processes (Conant and Ashby, 1970; Hills
et al., 2010), which might be even more clearly apparent if we
think of the possibility of spatializing abstract domains such as
complex feature spaces (Eichenbaum, 2015; Whittington et al.,
2018), or even time (Howard, 2018; Gauthier et al., 2019).

The H/E-S represents both the developmental foundation
and functional apex of the cortical hierarchy (Hawkins and
Blakeslee, 2004; Barron et al., 2020). In predictive processing
models of the brain—e.g., the variational autoencoder
framework described here—observations not predicted at
lower levels eventually reach the entorhinal cortex and
hippocampus. We propose the H/E-S allows these high-level
prediction-errors to be temporarily encoded and organized
with spatiotemporal and abstract relational structure for
informational synergy. Indeed, on a high-level of abstraction,
the H/E-S can be considered to be a kind of Kalman variational
autoencoder that combines heterogeneous forms of (precision-
weighted) information for SLAM in generalized state/phase
space (Fraccaro et al., 2017; Zhang et al., 2017). Alternatively
framed, the cortical predictive hierarchy can be viewed as
hierarchical Kalman filtering all the way up and all the way
down (Friston, 2010). Along these lines, it is notable that the
H/E-S itself may operate in a manner that reflects more general
principles of cortical predictive processing. With canonical
microcircuits for predictive coding, predictions are associated
with deep pyramidal neurons and alpha/beta frequencies, and
prediction-errors are associated with superficial pyramidal
neurons and gamma frequencies (Bastos et al., 2012, 2020).
Consistently with the H/E-S involving predictive processing,
novel information (i.e., prediction errors) induce activation of
superficial pyramidal neurons for entorhinal cortex, dentate,
and CA3, and recollection (i.e., predictions) are associated
with activations in deep pyramidal neurons for CA1 and
entorhinal cortices (Maass et al., 2014). Also consistently
with a predictive processing account, another study observed
superficial place cells in CA1 responding (via a rate code) in cue
poor-environments, and deep pyramidal neurons responding
(via a phase code) in cue-rich environments, where we might
respectively expect either prediction-errors or predictions to
predominate (Sharif et al., 2020).

From a predictive coding perspective, the hippocampus is
a strange kind of cortex, not only because of its particular
cytoarchitectonic properties (e.g., 3 vs. 6 layers), but also because
of its connectomic centrality. Some proposals have suggested
that memory recall may arise from “fictive prediction errors”
(Barron et al., 2020)—a perhaps somewhat counter-intuitive
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suggestion, in that the hippocampus is considered to be the
top of the cortical heterarchy, and hence would be expected
to only provide descending predictions—so providing a source
of training signals for optimizing generative models of the
world without sensory data, as well as affording stimulus-
independent learning and imaginative planning. This is
consistent with work from DeepMind in which the hippocampus
is described as operating according to principles of “big loop
recurrence”, where its outputs can be recirculated as inputs for
offline learning and counterfactual processing (Koster et al.,
2018). Indeed, the H/E-S may not only provide sources of
predictions for the neocortex, but potentially prediction-errors
for itself, possibly by parameterizing simulations from cortical
generative models (Higgins et al., 2020). Further, recent evidence
regarding episodic memory formation and retrieval suggests
that interactions between cortex and the H/E-S may reflect
the roles of various frequency bands in predictive coding, or
“routing” (Griffiths B. J. et al., 2019; Bastos et al., 2020). In
this work, neocortical alpha/beta (8–20 Hz) power decreases
reliably correlated with subsequent hippocampal fast gamma
(60–80 Hz), and hippocampal slow gamma (40–50 Hz) power,
potentially indicative of a trading off between predictions and
prediction errors. However, this is somewhat different than
the standard predictive coding account attributed to the cortex
more generally, in that gamma frequency involvement may
support the aforementioned idea that hippocampal reactivation
of memories involve “fictive prediction errors” (Barron et al.,
2020), rather than a suppressive explaining away.

In contrast to other slow rhythms, hippocampal theta
oscillations may indicate enhancement of observations via
cross-frequency phase coupling (Canolty and Knight, 2010),
potentially providing a basis for high-level action and attentional
selection. Along these lines, the ability of theta-oscillations to
select and orchestrate cortical ensembles at gamma frequencies
may provide a role for the hippocampal system as a comparator,
enabling contrasting between percepts, whether based on
observations or imagination (Safron, 2021b). Opposite phase
relations between CA1 and CA3 (Tingley and Buzsáki, 2018)
are suggestive, potentially indicating both a kind of predictive
coding within the hippocampal system, and possibly also
instantiating and orchestrating the formation and contrasting
of corresponding cortical ensembles as alternating phases of
duty cycles for theta oscillations (Heusser et al., 2016; Kunz
et al., 2019). Indeed, the entertainment of counterfactuals might
not only depend on a cortical hierarchy of sufficient size to
support an inner loop separable from immediate engagement
with the sensorium (Buckner and Krienen, 2013), but also a
working H/E-S to stabilize ensembles associated with novel
(due to being non-actual) possibilities (Hassabis et al., 2007). In
this way, in conjunction with the rest of the cortex, the H/E-S
could be viewed as an energy-based self-supervised contrastive
learner (Mazzaglia et al., 2022), which may enable a substantial
amount of adaptive-autonomous behavior if (variational) free-

energy/prediction-error is being minimized with respect to
divergences between goals and present estimated states (Hafner
et al., 2020; Safron, 2021b).

It has recently been suggested by researchers at Numenta
(a biologically-inspired AI company) that the principles (and
particular cellular adaptations such as grid cells) involved in
H/E-S functioning—e.g., allocentric object modeling (Sabour
et al., 2017; Kosiorek et al., 2019)—may be recapitulated
throughout the entire neocortex (Hawkins et al., 2019). The
idea that the H/E-S may represent a template for understanding
the neocortex is not unreasonable, since while it is referred
to as “subcortical”, it is technically composed of cortical tissue
(Insausti et al., 2017). Along these lines, not only is the H/E-
S topologically central as a “convergence divergence zone”
(Damasio, 2012) and hub for “semantic pointers” (Blouw
et al., 2016), but it is also primary from an evolutionary (as
archaecortex/periallocortex) and developmental perspective.

Modeling based on object-centered reference frames may be
a broader property of the neocortex (Hawkins, 2021). However,
we believe that such coherent perspectives may depend on being
able to conduct active inference and learning with sufficient
degrees of independence from other modeling/control processes
(Thomas et al., 2017, 2018). That is, we suggest that for
emergent modules to have H/E-S properties, they must be able
to achieve informational closure with sufficient rapidity that
they can both independently inform and be informed by action-
perception cycles with respect to particular effector-sensor
systems. For example, the establishment of such independently
controllable factors may be the case for large macrocolumns
such as rodent whisker barrels, but potentially not for ocular
dominance columns. To the extent that hippocampal and
entorhinal cell-types are found more generally throughout the
cortex (Long and Zhang, 2021), we suggest that it remains
ambiguous as to whether this reflects G-SLAM constituting a
common cortical algorithm, or whether such representations
are induced over the course of development via integrative
functioning involving the H/E-S.

The H/E-S as sense-maker and value
integrator/realizer

Switching between conceptual scenes involves ramping of
hippocampal activity, followed by high-frequency signaling with
the cortex as a new frame of sense making is established
(de la Prida, 2020; Karimi Abadchi et al., 2020; O’Callaghan
et al., 2021). Theoretically, these events (potentially accompanied
by sharp wave ripples) would represent the formation of
new grid/place tiling/mapping/graphing over a space/scope
of relevance, but where sufficient functionality is carried
over across remappings for integration of information across
episodes. Functionally speaking, these frame-shifts could be
understood in terms of Lévy flights with respect to generalized
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search, so allowing for more exploratory processing and creative
solutions in the face of challenges (Hills et al., 2010; McNamee
et al., 2021). That is, in contrast to searching via random walks
that would tend to result in reliable exploitative mapping of
simple domains, such discontinuous (and potentially fanciful)
flights to remote areas of hypothesis/phase spaces would allow
agents to both more efficiently explore complex domains and
escape from local optima. Considering that the H/E-S may be
understood as the highest (or most flexibly integrative) level
of agent-level control processes, altering parameters/modulators
relevant for this kind of more exploitative or exploratory
(generalized) search could be some of the most significant
sources on variation both between and within individuals and
species (Safron, 2020c).

While the precise conditions for remapping are likely to
vary based on multiple conditions, degree of overall prediction-
error seems to be one reliable trigger, as in an experiment in
which participants were cued to retrieve well-learned complex
room images from memory and then presented with either
identical or modified pictures (Bein et al., 2020); in this study, the
number of changes caused CA1–CA3 connectivity to decrease
(potentially indicating less intra-hippocampal recurrent activity)
and CA1-entorhinal connectivity to increase. Consistently,
another study found sensitivity to reward prediction errors
with respect to the establishment of new event boundaries
(Rouhani et al., 2020). Similar influences on the stability of
mappings by more general salience is suggested by studies
in which the H/E-S shows sensitivity to interactions with the
amygdala and responses to fearful stimuli (Chen et al., 2019), as
well as modulation of encoding based on attention/expectancy
(Mack et al., 2018, 2020; Urgolites et al., 2020). The dividing
of continuous unfoldings into discrete epochs provides another
means by which abstract phenomena such as time may be
conceptualized by the H/E-S (in addition to their spatialization,
perhaps as a kind of multidimensional scaling onto lower
dimensional manifolds that may be inspected either through
fictive navigation or imaginative visual foraging (Ramachandran
et al., 2016).

Notably, the H/E-S may not just be sensitive to reward, but
it may also help to provide a major source of the prediction
errors that drive phasic dopamine (Mannella et al., 2013; Ballard
et al., 2019; Jang et al., 2019; Laubach et al., 2020), potentially
involving internal contrasting between hippocampal subfields,
and with overall prediction-error being further integrated via
outputs to the subiculum (Tingley and Buzsáki, 2018; Canto
et al., 2019). This may allow for the allostatic prioritization of
goals with respect to not only cortical predictions from medial
prefrontal cortices, but even homeostatic regulatory nuclei of the
septum (Tingley and Buzsáki, 2018; Kunz et al., 2019; Livneh
et al., 2020). The importance of the H/E-S for motivational states
is also evidenced by its ability to influence the interoceptive
components of emotions (Edwards-Duric et al., 2020), which
may have a further (circular) causal significance in helping

to drive counterfactual simulations, potentially understandable
as affectively-canalized Markov chain Monte Carlo tree search
through value space (Dohmatob et al., 2020; Hesp et al., 2020;
Parascandolo et al., 2020; Safron, 2021b). In this way, not only
would the H/E-S help implement SLAM processes with respect
to both concrete and abstract cognition, but it may also help
to explain how agent-level mental processes can enter causal
streams leading to both mental simulations and overt enaction,
so affording some of the varieties of “free will” worth having for
autonomous systems (Safron, 2021b).

Some evidence for this affective influencing of H/E-S
dynamics may potentially be found in studies of increased
inter-hemispheric phase coupling (delta range coherence)
during treadmill running periods (Furtunato et al., 2020),
potentially corresponding to periods of increased driving by
biophysical signals indicating organismic salience. Crucially,
sources of H/E-S “reward” may not just take the form of the
aforementioned extrinsic value of goal realization, but may
also be driven by the intrinsic value of novel information,
for the hippocampus could provide a natural integrator of
prediction-error as top of the cortical hierarchy (Hawkins and
Blakeslee, 2004; Mannella et al., 2013; Fonken et al., 2020).
While the hippocampus and ventromedial prefrontal cortex
may usually work together in estimating expected value (or
opportunities for free energy minimization), theoretically, they
may also function as semi-separate value signals in terms
of respective information gain and preference satisfaction. In
this way, convergence of the H/E-S and its ventromedial
prefrontal collaborators upon the accumbens core—and thereby
nigral motor dopamine (Mannella et al., 2013)—may represent
physical manifestations of the dual optimization for intrinsic
and extrinsic value prescribed by active inference as a normative
account of intelligence. This kind of convergent control based
on heterogeneous (fundamental) value signals is notable, as it
is becoming increasingly clear the H/E-S is more than just a
temporary memory buffer, but rather may constitute a primary
basis for autonomous functioning for vertebrates as adaptive
cybernetic systems, as highlighted in Figure 6.

G(eneralized-)SLAM as core
cognitive process

As described above, the H/E-S and its functional
relationships with the neocortex may be understood as
implementing a kind of Kalman variational autoencoder
(Fraccaro et al., 2017). In this capacity, the H/E-S may provide
inspiration for developing advanced SLAM architectures. In
its dual role as both memory and control system, the H/E-
S has been further optimized for facilitating comparisons
between largescale patterns (e.g., organismic states), which in
machine learning terms may be understood as implementing
something akin to energy-based contrastive learning
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FIGURE 6

A model of hippocampally-orchestrated imaginative planning and action selection via generalized navigation. Goal-oriented action sequences
are depicted with respect to relevant neural processes. The hippocampal system provides (a) organization of cortical attracting states into value-
canalized spatiotemporal trajectories, (b) stabilization of ensembles via theta-mediated cross-frequency phase coupling, and (c) goal-oriented
cognition and behavior via contrasting (not depicted) sensed and imagined states. Hippocampal trajectories are shaped according to whichever
paths are expected to result in more positively valanced outcomes (cf. reward prediction errors). The expected value associated with navigating
to different portions of (potentially abstract) space is informed via coupling with similarly spatiotemporally-organized value representations (red
shaded hexagons) in vmPFC and associated systems. As chained patterns of activity progress across hippocampal place fields (red hexagons with
variable degrees of shading), theta-synchronized frontal ensembles (yellow shading spreading towards the front of the brain) help to generate (via
cross-frequency phase coupling) ensembles for directing attention, working memory, and overt enaction. Sensory updating of posterior cortices
occurs at alpha frequencies (blue shading), so providing a basis for conscious perception and imagination. With respect to these integrated
estimates of sensory states, hippocampal coupling at theta frequencies (yellow shading spreading towards the back of the brain) provides a basis
for (a) episodic memory and replay, (b) novel imaginings, and (c) adjustment of neuronal activity selection via orchestrated contrasting between
cortical ensembles. Abbreviations: nAC, nucleus accumbens; vmPFC, ventromedial prefrontal cortex; dmPFC, dorsomedial prefrontal cortex;
SMA, supplementary motor area; Pre-SMA, presupplementary motor area; SEF, supplementary eye fields; PCC, posterior cingulate cortex; PMCs,
posterior medial cortices; IPL, inferior parietal lobule. Reprinted with permission from Safron (2021b).

(Marblestone et al., 2016; Richards et al., 2019; Mazzaglia et al.,
2022). In this capacity, the H/E-S may provide inspiration for
developing architectures capable of engaging in self-supervised
learning, counterfactual modeling, and further enabling
high-level reasoning abilities including analogical structure
mapping (Gentner, 2010; Safron, 2019a), causal inference (Pearl
and Mackenzie, 2018), and imaginative planning (Kaplan and
Friston, 2018; Safron, 2021b).

As described above, and elsewhere (Safron, 2020b,c,
2021a,b), LatentSLAM’s dual-tier architecture provides an
abstract cybernetic interpretation of the H/E-S as the highest (or
most integrative) level of heterarchical control for embodied-
embedded organisms as they move through physical and
imagined worlds in the pursuit of valued goals, so providing a
computational/functional account of agency in biological (and
perhaps artificial) systems. Further, this hierarchical architecture

provides a basis for meta-learning in which slower and more
encompassing “outer loop” processes aggregate information over
faster “inner loop” processes, so affording the much-desired
goal of realizing synergistic inference and generalization of
knowledge across experiences (or lessons in curriculums for
lifelong learning). Even more, the upper levels of this kind of
hybrid architecture may provide a basis for explicit symbolic
reasoning (via abstract experience graphs) in addition to
enactive couplings with the world (via adaptive control of
poses/views), both of which are likely required for achieving
the goal of robust autonomous functioning for artificial
systems.

While attempting to navigate towards such destinations may
seem excessively ambitious, we would note that work on the
extended H/E-S was part of what inspired the formation of
some of the world’s leading AI companies such as DeepMind,
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and continues to be a central part of their research programs
(Hassabis and Maguire, 2009; Hassabis et al., 2017; Koster et al.,
2018; McNamee et al., 2021). Indeed, it is increasingly being
recognized that the spatiotemporal modeling properties of the
H/E-S may constitute an invaluable integrative framework for
understanding high-level cognition (Whittington et al., 2022).
However, we believe a G-SLAM framing might be particularly
notable in connecting to the context under which these systems
were first selected/shaped by evolution (and development),
as well as one of the primary functionalities of the H/E-S
that continues throughout the lifespan of organisms. That is,
our abilities to navigate both physical and conceptual worlds
represent an ongoing challenge for as long as we live. We further
suggest the connection between the practical necessities involved
in engineering physical systems may provide a particularly
valuable source of empirical traction for attempting to specify
the roles of particular features of the H/E-S, in that we can
draw upon the rich data generated as robots attempt to navigate
through the world.

Further, by also drawing upon biological details in designing
AI-architectures, we may find ourselves with access to invaluable
inductive biases which might be otherwise overlooked. Two
examples that come to mind include recent proposals by Bengio
and LeCun with respect to “GFlowNets” and “Joint Embedding
Predictive Architectures” (Bengio et al., 2022; LeCun, 2022).
We believe these efforts in creating autonomous and generally
intelligent systems may benefit by incorporating principles of
G-SLAM, such as the creation of systems capable of handling
loop trajectories as potentially enabling greater open-ended
and life-long learning, or in looking towards hybrid systems
similar to LatentSLAM as potentially allowing for explicit
representations and symbolic processing. While it has often
been said that the goal of AI is to create the “cognitive
equivalent of an airplane wing,” we would suggest that the
magnitude of the challenge may be far greater (more akin
to building a fully functioning plane or space ship), and the
problems of navigating through under-constrained architectural
(and learning curricula) design-spaces may be unsurmountable
without biological inspiration/grounding.

While LatentSLAM continues to be refined, we believe
these kinds of architectures provide a general framework for
understanding core elements of minds and brains. Indeed, to
localize something within a spatialized reference frame—which
itself is impacted by the entities it maps/graphs— may be what
it means to “understand” and “explain” something (Lakoff and
Johnson, 1999), and possibly even to experience anything at all
(Safron, 2020a, 2021a,b). That is to understand is to be able
to adopt a stance (or pose) from which elements and their
inter-relations may be mapped (or localized), as if projected
onto a plane whereby they are made visible for inspection (or
navigation). We believe these etymological considerations on the
nature of knowledge may be more than “mere” metaphors but
could point to the fundamentally embodied nature of minds.

We not only suggest that all thought may be understood
as navigating between representations that are being localized
and mapped (or graphed) within an organizing conceptual
domain, but all communication may be understood as the
transmission of such structures (as trajectories) between minds
(Zurn and Bassett, 2020). While the simultaneity of generalized
localization and mapping in cognition may not be obvious upon
introspection, this is more clearly the case when considering
unfamiliar concepts. For such novel domains, relationships
between concepts and broader organizing schemas involves the
same kind of challenges of circular inference as found in SLAM.
That is, when we are first attempting to understand a conceptual
domain, we do not know how to effectively connect the entities
whose shared features and relations motivate the construction
of organizing schemas. However, without such higher-order
abstractions and the predictive (or compressive) capacities they
provide, it is unclear which features of and relations between
entities are relevant for shared structure learning.

Heuristic algorithms may be invaluable in the bootstrapping
process, such as the kind of clustering involved in the
hierarchical Dirichlet process (Griffiths T. et al., 2019), models
of category formation via analogical alignment (Kuehne et al.,
2000), or concept derivation as abstraction over episodes
(Mack et al., 2018). We agree that such accounts may speak
to fundamental mental processes, but we also suggest that
rather than static feature maps, such nonparametric (Bayesian)
structure learning may apply to paths through mapped/graphed
domains. This is part of why we emphasized our use
of the Fisher distance measure above, as an information
metric that naturally applies to trajectories may potentially
provide the most valid (and potentially predictive) means
of assessing similarity/dissimilarity between entities in feature
spaces. Indeed, one of the most notable aspects of thinking is
its sequential operation and sensitivity to path dependencies.
While abstract conceptualization does allow for a good deal of
cognitive flexibility, cognition is still largely defined by deriving
knowledge via particular “chains of reasoning,” or “paths”
through mental space.

Regardless of the particular routes by which we reach the
heights of category learning, the formation of such abstract
representations constitute what may be the most powerful aspect
of our intelligence in terms of generalizable knowledge that
can robustly transfer across particular episodes (Marcus, 2020).
Such abstract categories further allow for the kinds of structured
representations whose importance was emphasized in decades
of work in (non-radically-enactive) cognitive science and “good
old fashioned AI.” The significance of such knowledge structures
may prove even greater in light of the advent of graph networks
within the context of geometric deep learning (Battaglia et al.,
2018)—and symbolic regression as potentially representing a
further degree of abstraction (Cranmer et al., 2020). Such
graphical representations are of increasing interest because
of both their interpretability as well as their extraordinary
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efficiency for modeling physical systems. With our models of
node duplication and graph-relaxation, LatentSLAM provides
a biologically plausible and computationally-tractable account
of how such cognitive schemas may be formed and modified
through experience. This is notable in that finding principled
means of creating and modifying particular structures for graph
neural networks (GNNs) remains an ongoing challenge. But
if such challenges can be surmounted, then we may achieve
the promise of neurosymbolic AI in combining the power of
connectionism with reasoning over explicitly represented (and
related) symbols (Garcez and Lamb, 2020; Greff et al., 2020).
More specifically, we believe that the ability of the H/E-S to create
navigable spaces populated by high-level attracting states may
also provide a basis for creating “ad hoc” (Barsalou, 1983) GNN
structures for different purposes.

While the relationships between place cells in the H/E-S
(or nodes in LatentSLAM) can be understood as a kind of
GNN, we believe it would be more accurate to characterize
these models as graph nets, in that they represent relations—or
semantic pointers (Blouw et al., 2016)—for hierarchically
lower graphs. While these details have yet to be incorporated
into LatentSLAM, it has been suggested that heteromodal
association cortices may constitute a shared latent space across
(autoencoding) cortical hierarchies with quasi-topographic
characteristics akin to those found with GNNs (Safron, 2020b,
2021a,b). While the H/E-S has significant interactions with the
entire cortical heterarchy, connectivity is most substantial for
deeper (or hierarchically higher) portions of cortex, consistent
with its potential role as a kind of graph network. The
degree to which these machine learning analogies may apply
to brain functioning is yet to be determined, but they
nonetheless represent a promising direction for creating artificial
systems that recapitulate the properties of natural intelligences
(Greff et al., 2020).

Intriguingly, the work in which brains were proposed to
entail GNN-type computation was developed independently
of LatentSLAM. However, similarly to how LatentSLAMs only
uses views and proprioceptive poses for specifying particular
experiences to be mapped (Figure 2), this other work proposed
that sufficient bases for agentic world modeling may involve
conjoined visuospatial and somatospatial modalities, potentially
(but not necessarily) understood as respective grid and
mesh-pose GNNs. In the model of episodic memory and
imagination described above (Figure 6), H/E-S trajectories are
used to orchestrate state transitions between these experiences
as the “stream of consciousness” (James, 1890). While many
aspects of cognition are unconscious, “thinking” and “reasoning”
are usually considered to involve sequentially generated
conscious operations. Notably, the formal conceptualization
of computation may have been largely inspired by Turing
introspecting his own consciousness in the process of doing
mathematics (Dehaene, 2014; Graves et al., 2014). Given that
it is unclear that we can be conscious of anything that lacks

grounding in somatic modalities and their abilities to change
(and be controlled) through time, then all thinking/reasoning
may potentially be understood as involving the kinds of action
selection and modeling described by LatentSLAM.

Fully describing the potential correspondences between
SLAM and high-level cognition is beyond the scope of a single
publication (Table 1), but before concluding we will briefly
comment on the importance of loop-closures and thresholds
for graph-relaxation and node duplication. In brief, we may
understand a (generalized) loop-closure event as a primary
factor contributing to the feeling of understanding and insight
(Gopnik, 1998; Fonken et al., 2020; Oh et al., 2020). After an
initial period of relatively ambiguous exploration, the formation
of a causal account (or trajectory through a concept space/graph)
would allow for a rapid decrease in prediction-error (Joffily
and Coricelli, 2013), or increase in compression (Schmidhuber,
2010). While some individuals may be relatively insensitive
to these feelings of (potentially sudden) conceptual familiarity
(Hou et al., 2013; Ben-Yakov et al., 2014), others may potentially
be overly sensitive (e.g., “déjà vu” and other kinds of false positive
inferences), with the specific functional tradeoffs involved
depending on particular contexts (DeYoung, 2015; Blain et al.,
2020; Safron and DeYoung, 2021).

Events in which this kind of cognitive closure is achieved
provide special opportunities for updating H/E-S models (or
categories) via graph-relaxation and node duplication. A variety
of relevant parameters can be identified (Figure 3), whether
in terms of thresholds for detecting loop-closures, the extent
to which graphs may be relaxed, or the ease with which new
nodes are created. However, in a G-SLAM context of trying to
model cognition more generally, we may think of loop-closure
recognition thresholds as sensitivity to cumulative prediction
error increases/decreases, graph-relaxation as changing attractor
dynamics within the H/E-S and neocortex on multiple
scales, and node duplication as the establishment of new
local ensembles of effective connectivity (cf. chained bump
attractors)—and potentially (but not necessarily) involving
neurogenesis, for which it is notable that the hippocampus is one
of the few places where this phenomenon is reliably observed.
These core SLAM processes may depend on multiple factors,
including neuromodulators such as dopamine and serotonin
(Safron, 2020c; Safron and Sheikhbahaee, 2021), as well as on
Bayesian priors (or “yesterday’s posteriors”).

With respect to the previously described example of
differential tuning thresholds for mapping the structure of aisles
(Figure 5), we may potentially have a crucial source of individual
differences in cognition. In theory, G-SLAM may be pointing
to (or localizing) a cognitive spectrum (and potential basis for
differential diatheses) spanning autism and schizophrenia (Byars
et al., 2014; Crespi and Dinsdale, 2019). Theoretically, we may
even expect to see these kinds of variations in SLAM maps in
the drawings of autistic and schizophrenic individuals (Morgan
et al., 2019; Philippsen and Nagai, 2020).

Frontiers in Systems Neuroscience 19 frontiersin.org

https://doi.org/10.3389/fnsys.2022.787659
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://www.frontiersin.org


Safron et al. 10.3389/fnsys.2022.787659

Speculatively, not only may the conceptual understanding
of that which is being drawn be mapped and navigated by
the H/E-S as SLAM system, but the eye movements (Wynn
et al., 2020) and hand motions involved in skilled actions
such as drawing could themselves be orchestrated according
to hippocampal trajectories as a basis for chained equilibrium
setpoints (Latash, 2010). Even more speculatively, it could even
be the case that further degrees of sophisticated control—as
inference (Kaplan and Friston, 2018; Friston et al., 2021)—are
bootstrapped by simultaneously localizing and mapping the
body itself as a kind of space/graph, so allowing for more rarefied
and general SLAM capacities over the course of development. In
this view, much of cognitive development would involve initial
phases of using the H/E-S to learn intentional control over
either overtly or covertly expressed motor patterns, which then
become automatized (or amortized) by the thalamic-cerebellar
system (Safron, 2021a; Shine, 2021) and dorsal striatal-cortical
loops (Mannella et al., 2013), so freeing up the G-SLAM system
for further high-level predictive modeling and control. Can
the body itself be understood as a mapped spatial domain,
or is this just a way of speaking without any useful technical
correspondences? How far can we go with using these patterns
of linguistic use as hypotheses regarding cognitive processes and
underlying neural mechanisms? Could it even be the case that
the phenomenology of embodiment involves navigation through
and mapping of body maps via these cross-modal interactions,
which when disrupted could potentially contribute to altered
states of consciousness or potentially clinical conditions such as
depersonalization (Safron, 2020c; Ciaunica and Safron, 2022)?

With respect to personhood, beyond its foundational
role for autonomous functioning, widespread orchestration
of value-canalized trajectories through biophysical phase
space by the H/E-S also enables the development (and
ongoing functioning) of the spatiotemporally-extended
processes required for autonoetic and autobiographical self-
consciousness. In addition to constituting major transitions
in evolution, the advent of such self-reflective capacities
may have been required for the construction of advanced
social coordination and a (shared) symbolic order of being.
While such rarefied processes may be well-beyond anything
we are close to engendering in (abiotic) machines, it may
be the case that we are forced to recapitulate these kinds of
H/E-S functionalities if we are to successfully arrive at the
destination of creating robustly autonomous and general
artificial intelligences.

Indeed, G-SLAM parameters may constitute the most
important source of variation we can identify both between and
within individuals. To venture deep into unknown speculative
territory, the H/E-S may be the source of key adaptations
contributing to the evolution of cognitive modernity through
(potentially proto-schizotypal) flexibly creative cognition and
the birth of cumulative culture, which in time came to represent
what may be the “secret of our success” as a species and

the greatest of all major transitions in (generalized) evolution
(Premack, 1983; Gentner, 2010; Hofstadter and Sander, 2013;
Henrich, 2017; Safron, 2019b, 2020c; van den Heuvel et al., 2019;
Dehaene et al., 2022). While such models extend far beyond
domains of knowledge for which we have well-developed maps,
we believe such possibilities are worthy of further exploration.

Present limitations and future directions
for G-SLAM

While we describe experiments for LatentSLAM in other
publications (Çatal et al., 2021a), future work should attempt
to explicitly illustrate G-SLAM principles with experiments and
mathematical models/simulations. Further, while approaches
to localization and mapping may be diverse, this does
not mean that all technical solutions involved are best
described as SLAM problems. However, we believe that
analogues of processes like loop closure and node duplication
(and pruning) with respect to trajectories through cognitive
spaces would constitute strong evidence for the value of a
generalized SLAM perspective. It is also important to note
that symbolic processing in the brain involves more than
the H/E-S. For instance, a substantial amount of symbolic
communication is linguistic in a way that could be described
in terms of a hierarchical control system for vocal production
and hearing (gestural communication could provide another
illustrative example). While such action-perception cycles need
not involve the H/E-S, we also believe their functioning
may potentially be enhanced via H/E-S orchestration of
high-level dynamics (e.g., channeling neuronal manifolds along
particular trajectories).

We also believe it will be valuable to explore research
attempting to combine SLAM and various forms of semantic
processing in robotics/AI (Kostavelis and Gasteratos, 2015;
Sünderhauf et al., 2017; Garg et al., 2020). Not only does such
work illustrate the complexity of SLAM problems and how they
may (and must) be integrated with other cognitive processes
(cf. artificial consciousness?), but it also points to other ways
in which robotics can be used to inform our understanding of
minds, whether biologically grown and artificially engineered).
Finally, while we focus on a particular SLAM architecture
developed within the Free Energy Principle and Active Inference
framework, we believe it will be fruitful to consider other
approaches as well, many of which are extremely well developed
and sophisticated in their own right (Penny et al., 2013; Madl
et al., 2018; Stoianov et al., 2022; Taniguchi et al., 2022).

Conclusions

We have searched through broad and diverse terrains in
considering the ideas above, covering a lot of ground. To try
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to come full circle, we have described technical details of a
machine learning architecture for autonomous robot navigation,
discussed particulars of biological systems for realizing these
functionalities in brains, and started to explore how these
principles may provide a framework for understanding all
high-level cognition in terms of simultaneous localization and
mapping in space (broadly construed to include conceptual
spaces). We have only begun this journey, but we believe
the destination is promising, and we invite others to join us
in exploring this framework for understanding the nature of
thought. Some might contend that “prediction” or “modeling”
are more encompassing and fundamental than a generalized
SLAM perspective, and we would not disagree. However, we
believe that G-SLAM is unique in allowing for all these
perspectives to be combined with the principles of ecological
rationality that constituted the primary selective pressures
for high-level cognition over the course of evolution and
development. We suggest this neuroethological perspective
will be invaluable in allowing us to “carve nature at its
joints”, in terms of identifying the most important features
of functioning for the hippocampal/entorhinal system and
its connections to the rest of the brain [and body (and
world)]. We further believe that G-SLAM is unique in the
extent to which it connects to nature(s) of experience, where
we do in fact exist in a spatial world through which we
must navigate, and where it is difficult to find aspects of
mind not impacted by this fundamental physical situatedness.
In light of these sources of potential insight, we believe
that G-SLAM represents the way forward for understanding
complex minds, and potentially for building them, if we can
find sustainable paths into the unexplored territory of the
future.
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Appendix A: LatentSLAM
mathematical model

The latentSLAM model for SLAM can be seen as a two-level
active inference hierarchy working together to enable navigation.
The lower-level abstracts actions and observations from the
physical world into an abstract representation. The higher-level
takes the lower-level abstractions as inputs and creates a global
abstraction over them. In this appendix we will go into the
mathematical details of these models.

Generic active inference model

FIGURE A1

Graphical representation of a generic active inference model.
Gray nodes indicate that the corresponding value is observed,
white nodes need to be inferred.

Both levels of the hierarchy form an instantiation of an active
inference model (Figure A1). This means that each level forms
a generative model over its own actions and observations. We
assume the environment is modeled up to a certain time horizon
T by the agent as a POMDP with joint probability distribution

P(õ, s̃, ã,π) = P(so)P(π)
T∏

t = 1

P(ot |st )P(st |st−1, at−1)P(at−1 |π)

Where tildes indicate sequences of the corresponding
variables, a indicates the action, o the observation, s the latent
states and π the policy.

The agent needs to infer the posterior belief on latent
states P(s̃|õ, ã). In order to achieve this, we use a variational
approximation of the true posterior, which we parametrize as

Q(s̃|õ, ã) = Q(s0|o0)

T∏
t = 1

Q(st|st−1, at−1, ot)

Note that in all following discussions we will use Q to
designate a (variational) posterior and P as a prior distribution.

As we the agent is acting according to the free energy principle, it
is actively minimizing its variational free energy. Which we posit
here as

F = DKL[Q(s̃|õ, ã)||P(s̃, ã)] − EQ(s̃|õ,ã)[log P(õ|s̃)]

For a more detailed description of the derivation of F, we
refer the reader to. The generative model and the free energy
form only one aspect of active inference. The agent not only
needs to infer states from the present, but also actions for the
future. This is achieved through the expected free energy, which
we define for a future timestep τ and a given policy π as

G(π ,τ) = DKL[Q(sτ |π)||P(sτ )] + EQ(sτ )[H(P(oτ |sτ ))]

Summing over the future timesteps then gives the expected free
energy for a given policy.

Navigation model

Similar to the generic active inference model, we start by
defining the generative model in terms of a joint distribution
over its parts.

P(õ, s̃, ã, l̃, p̃, m̃,π) = P(õ, s̃i>0, ã, p̃i>0,π |l̃, s̃0, p̃0)P(l̃, m̃, s̃0, p̃0)

Where o, s, and π keep their earlier definition and we now
introduce the pose p, location l and move m to the discussion.
This joint distribution naturally decomposes into two new joints
over a subset of variables, allowing the independent treatment of
higher-level and lower-level navigation. The resulting graphical
model is shown in Figure A2.

FIGURE A2

Graphical overview of the hierarchical navigation model.
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If we look at the free energy of this model, we get

Fhierarchical = EQ

[
log Q

(
s̃, p̃
)
− log P

(
õ, s̃i>0, ã, p̃i>0|l̃, s̃0, p̃o

)
+log Q

(
l̃
)
− log P

(
l̃, m̃, s̃0, p̃0

)]
= Flow + Fhigh

Allowing for a clean separation in the creation of the lower
and higher-level state models.

Lower-level model

Using the same approximations for the lower-level model as
in the generic active inference model, we write the free energy as

Flow =
∑

t
EQ[log Q(pt)− log P(pt|pt−1, at−1, st)]

+ DKL[Q(st)||P(st|st−1, at−1)] + EQ[− log P(ot|st)]

From this we recover the same generative model for the
observations and observational latent states as before in the
generic case, however, the model is now supplemented with a
term responsible for the pose estimation aspects. In effect, this
means that we do not use any pose information for the visual
perception part of the model. Note that the pose estimation is in
fact conditioned on the current perceptual state estimate.

As might be expected from the free energy formulation,
the lower-level perception is implemented as a generic active
inference model. The pose estimation aspect is deliberately left
as an expected difference between the pose posterior and prior.

The pose prior is implemented as simple dynamics model
from the action velocities used to control the agent, i.e.,

θt = θt−1 + υa1t

xt = xt−1 + υl1t

yt = yt−1 + υl1t

With vaand vl the angular and linear velocity of the agent and
x,y,θ the coordinates and rotation in the plane of the agent.

The pose posterior Q (pt) is implemented as a CAN with
energy dynamics described as

ε1x,1y,1θ = exp
−1x2

−1y2

kexc
p

exp
−1θ2

kexc
d

− exp
−1x2

−1y2

kinh
d

exp
−1θ2

kinh
d

With kd and kp the variance constants for place and
direction, and the superscript exc and inh used to indicate

whether the effect is inhibitory or excitatory. The resulting
behavior is locally excitatory and globally inhibitory. The
conditioning on observatory state st is achieved by creating an
extra excitatory link with a state-pose episodic memory.

Higher-level model

Starting again from the free energy functional

Fhigh =
∑
T

DKL[Q(lT )||P(lT |lT −1, mT −1)]

+ EQ[− log P(sT ,0|lT )− log P(pT ,0|lT )]

We again see the classical active inference model emerging.
Note the usage of T instead of t to indicate that this
model operates on a different timescale. Likewise, only
the initial lower-level states for that inference cycle appear
in the likelihood (remember that this model uses the
states of the lower-level as observations). Here again, the
actual implementation of these models is geared towards a
navigational task. In order to infer the location, the prior
distribution of locations is implemented as an experience
graph. Each node in the graph incorporates a state, pose
pair to link it with the lower level. Links between the
nodes indicate a connection traversable on the lower level.
The dynamics model P(lT |lT −1, mT − 1) is deduced from
the adjacency matrix of the graph. The posterior belief
Q(lT |sT ,t , pT ,t) is build by assigning probability inversely
proportional to the cosine similarity and Euclidean distance
between current state pose pair and the pairs reachable from the
current node.

Map updates also trigger a graph-relaxation pass, in order
to facilitate loop-closures. The graph-relaxation phase shifts the
stored poses in each experience map node according to

1pi
=

1
2

inbound∑
j = 1

(pj
− pi
−1pij)+

outbound∑
k = 1

(pk
− pi
−1pij)



Action inference

So far, we have only discussed the state inference aspects
of the navigation model, however, action inference is also an
important aspect of active inference. The expected free energy
for the lower-level model is

Glow(π , τ) = DKL[Q(sτ , pτ |π)||Q(sT+1, pT+1|lT , mT)]

+EQ(sτ )[H(P(oτ |sτ ))]

The prior preferences in this equation are provided by the
higher-level model, and form targets to achieve within the single
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timestep of that level. High level targets are then extracted
according to

Ghigh(π, τ) = DKL[Q(lτ |π)||P(lτ )] + EQ(lτ )[H(P(pτ ,0|lτ ))

+H(P(sτ ,0|lτ ))]

Action selection happens than according to a
two-phase planning process. First, at the coarser
higher-level, second at the fine-grained lower level.
This allows for a reduction in search space for a
given trajectory.
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