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Integrated world modeling theory (IWMT) is a synthetic theory of

consciousness that uses the free energy principle and active inference (FEP-AI)

framework to combine insights from integrated information theory (IIT) and

global neuronal workspace theory (GNWT). Here, I first review philosophical

principles and neural systems contributing to IWMT’s integrative perspective.

I then go on to describe predictive processing models of brains and their

connections to machine learning architectures, with particular emphasis on

autoencoders (perceptual and active inference), turbo-codes (establishment

of shared latent spaces for multi-modal integration and inferential synergy),

and graph neural networks (spatial and somatic modeling and control). Future

directions for IIT and GNWT are considered by exploring ways in which

modules and workspaces may be evaluated as both complexes of integrated

information and arenas for iterated Bayesian model selection. Based on

these considerations, I suggest novel ways in which integrated information

might be estimated using concepts from probabilistic graphical models,

flow networks, and game theory. Mechanistic and computational principles

are also considered with respect to the ongoing debate between IIT and

GNWT regarding the physical substrates of different kinds of conscious and

unconscious phenomena. I further explore how these ideas might relate to

the “Bayesian blur problem,” or how it is that a seemingly discrete experience

can be generated from probabilistic modeling, with some consideration of

analogies from quantum mechanics as potentially revealing different varieties

of inferential dynamics. I go on to describe potential means of addressing

critiques of causal structure theories based on network unfolding, and

the seeming absurdity of conscious expander graphs (without cybernetic

symbol grounding). Finally, I discuss future directions for work centered
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on attentional selection and the evolutionary origins of consciousness as

facilitated “unlimited associative learning.” While not quite solving the Hard

problem, this article expands on IWMT as a unifying model of consciousness

and the potential future evolution of minds.

KEYWORDS

consciousness, Integrated Information Theory (IIT), Global Neuronal Workspace
Theory (GNWT), Free Energy Principle and Active Inference (FEP-AI) Framework,
predictive turbo autoencoding, expander graphs, shared latent spaces, Graph Neural
Networks (GNNs)

Facing up to the enduring
problems of consciousness with
integrated world modeling theory

The Hard problem of consciousness asks, how can it be
that there is “something that it is like” to be a physical
system (Nagel, 1974; Chalmers, 1995)? The “meta-problem” of
consciousness refers to the (potentially more tractable) challenge
of addressing why it is that opinions and intuitions vary
greatly with respect to what it would take to meaningfully
answer this question (Chalmers, 2018). The “real problem” of
consciousness refers to the further challenge of addressing why
it is that different biophysical and computational phenomena
correspond to different qualities of experience (Seth, 2016).

Integrated world modeling theory (IWMT) attempts to
address these unsolved problems about the nature(s) of
consciousness by combining Integrated Information Theory
(IIT) and Global Neuronal Workspace Theory (GNWT) with
the Free Energy Principle and Active Inference framework
(FEP-AI). IIT speaks to the Hard problem by beginning from
phenomenological axioms, and then goes on to postulate
mechanisms that could realize such properties, ultimately
coming to the conclusion that consciousness is “what physics
feels like from the inside” (Koch, 2012). GNWT speaks to the
real problem by focusing on the properties of computational
systems that could realize the functions of consciousness as
a means of globally integrating and broadcasting information
from mental systems. FEP-AI has been used to address all
these problems in a variety of ways, with IWMT representing
one such attempt. For a detailed exploration of potential inter-
relations between FEP-AI, IIT, and GNWT, please see the
original publication of IWMT; for a high-level summary, please
see Supplementary Appendix Figure A.

In attempting to explain how there could be “something
that it is like” to be a physical system, it is worth noting that
this question is often phrased as “something that it feels like.”
The nature of embodied perception and affective states lie at the
heart of what it would take to provide a satisfying solution to the
Hard problem. Further, the Hard problem could be viewed as
containing an implicit question: “something that it feels like, for
whom?” While some may want to separate consciousness from

sensations or selfhood (Tononi et al., 2016), it may also be the
case that addressing the Hard problem requires understanding
the nature of selves, and as Dennett (2018) has argued, “free
will.” Along these lines, IWMT specifically places somatic
experiences and agentic selfhood at the core of consciousness,
and consciousness at the core of agency (Safron, 2021b).

Integrated world modeling theory specifically argues that
integrated information and global workspaces only entail
consciousness when applied to systems capable of functioning
as Bayesian belief networks and cybernetic controllers for
embodied agents (Seth, 2014; Safron, 2019, 2021b). That
is, IWMT agrees with IIT and GNWT with respect to
the integration and widespread availability of information
as necessary preconditions for consciousness, but disagrees
that these are sufficient enabling conditions for subjective
experience. [Note: GNWT’s more specific claim is that
workspaces help to select particular interpretations of events,
which is highly compatible with IWMT, especially with
more recent Bayesian interpretations of workspace dynamics
(Mashour et al., 2020; Safron, 2020a; Whyte and Smith,
2020).] Rather, IWMT argues that phenomenal consciousness
is what integrated world-modeling is like, when generative
processes are capable of jointly integrating information into
models with coherence with respect to space (i.e., relative
degrees of locality), time (i.e., relative changes within space),
and cause (i.e., regularities with respect to these changes,
potentially requiring some basic form of self/other-modeling) for
systems and their relationships with their environments. These
coherence-making properties are stipulated to be required for
situating modeled entities relative to each other with specific
features, without which there would be no means of generating
an experienceable world. Consciousness-entailing nervous
systems (functioning as generative models) are stipulated to
provide these sources of coherence via particular organizational
features, as well as by having actual semantic content by
virtue of evolving through interactions with a coherently
structured (and so semi-predictable) world. IWMT further
introduces a mechanism for generating complexes of integrated
information and global workspaces via self-organizing harmonic
modes (SOHMs), wherein synchrony both emerges from and
facilitates “communication-through-coherence” (Buzsáki and
Watson, 2012; Fries, 2015; Deco and Kringelbach, 2016;
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Atasoy et al., 2018). SOHMs are proposed to both require and
allow for high degrees of meaningful integrated information,
where meaning is understood as differences that make a
difference to the ability of systems to pursue their goals,
including the goal of modeling the world for the sake of
prediction and control.

Integrated world modeling theory focuses on the neural and
computational bases of ‘basic’ phenomenal consciousness, but
also has relevance for theories focused on “conscious access”
and “higher order” knowledge, where some of these implications
have been explored elsewhere with respect to goal-oriented
behavior and cognition/affect (Safron, 2021b). However, while
experience itself is proposed to be a unitary (and discrete)
phenomenon, more abstract capacities for various forms of
conscious access and self-awareness are considered to be more
multifarious in their manifestations. These distinctions will be
important for subsequent discussions in which we will consider
the physical and computational substrates of consciousness
adduced by various theories, where IWMT claims that multiple
points of view may be valid with respect to issues as to
whether experience is primarily realized by the frontal lobes
or a “posterior hot zone” (Boly et al., 2017). Strangely, IWMT
suggests that both these perspectives are likely accurate, but
with respect to different explananda. That is, IWMT agrees with
IIT that posterior cortices (and perhaps specific subnetworks
thereof) provide necessary and sufficient conditions for realizing
a consciousness-entailing generative (self-world) model over the
sensorium of an embodied-embedded agent. Yet IWMT also
agrees with GNWT that the frontal lobes are likely required for
accessing such experiences in terms of being able to manipulate,
reflect, and report on their contents (and contexts). However,
IWMT also suggests that notions of conscious access may
be insufficiently precise for progressive research and theory
construction, in that by the time we are considering the
processes contributing to such high-level functions, we may be
forced to also consider ways in which cognition extends beyond
brains and into bodies and extended embodiments/phenotypes,
so cautioning against overly simple mappings between modeling
and mechanisms. In what follows, we will explore the nature of
these claims in greater depth than in the original publication,
as well as additional considerations and future directions
for understanding the nature of experience in biological and
potentially artificial systems.

Preconditions for experience:
Space, time, cause, self, agency

By emphasizing the properties by which coherent world-
modeling is made possible, the philosophical foundations of
IWMT can be most strongly tied to the thought of Kant
and Helmholtz. The core claims of the theory are particularly
informed by Kant’s stipulation of synthetic a priori categories

(i.e., complex concepts possessed in advance of experience) as
preconditions for judgment. IWMT further argues that these
preconditions for coherent knowledge are also preconditions
for coherent experience, and focuses on the categories of
space (i.e., relative localization of entities), time (i.e., relative
transformations of entities in space), and cause (i.e., regularity
with respect to transformations). Without spatial, temporal, and
causal coherence, there can be no means of situating entities
relative to each other with specific properties, and so there
would be no means of generating an experienceable world.
This position is consistent with both the axioms of IIT (e.g.,
composition), the kind of informational synergy emphasized
by GNWT, and also the constructive epistemology of FEP-
AI (Swanson, 2016). IWMT goes further in emphasizing the
importance of selfhood, consistent with Kant’s notion of the
transcendental unity of apperception in which spatiotemporal
and causal information are bound together into a unified
manifold via a unified experiencing subject (Northoff, 2012).
While the stipulation of these properties of experience may
help to address the question of why there may be “something
that it feels like” to be some kinds of systems, a key question
remains unanswered: to what degrees must these forms of
coherence be present in which ways to enable different forms of
consciousness? While this issue will not be definitively resolved
here, we will consider neurophysiological and informational
principles that may be illuminating.

Helmholtz extended Kant’s project in a more empirical
direction, arguing that the experience of selfhood and freedom
in willing are preconditions for deriving conceptions of space,
time, and cause (De Kock, 2016). According to Helmholtz, a
self/world distinction and sense of agency are both required for
making sense of sensory observations, including with respect
to constructing these categories of experience. This more
empirically focused perspective is contrasted with Liebnizian
(Sleigh, 2003) notions of “pre-established harmony” as an
explanation for how minds come to be equipped with precisely
the intuitions required for making sense of the world. In this
way, Helmholtz rejected the a priori status of Kantian categories
as part of his general project of deflating mysticism, which
elsewhere involved critiquing the vitalist posit of a supernatural
force animating living things (i.e., élan vital). IWMT was
developed in the same spirit as Helmholtz’s naturalization of
mind and nature, although with somewhat greater sympathies to
notions of pre-established harmonies, since evolution by natural
selection represents a means by which mental systems could
come to non-mystically resonate with essential properties of the
world (Ramstead et al., 2017; Badcock et al., 2019; Zador, 2019).

Helmholtz’s argument for selfhood and agency as
foundational cognitive capacities is fully compatible with
IWMT and FEP-AI. The necessity of autonomy for coherent
modeling is emphasized in FEP-AI, in which expected free
energy (i.e., precision-weighted cumulative prediction errors
with respect to preferred states) is minimized via action/policy
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selection over predictive models for future (counterfactual)
goal realization (Friston et al., 2017a; Friston, 2018). In these
ways, IWMT supports both Kantian and Helmholtzian views
on the preconditions and origins of mind. IWMT also agrees
with Kant’s view in that the process of bootstrapping minds
(Gentner, 2010; Tenenbaum et al., 2011; Safron, 2021b) likely
requires some pre-established modes of cognitive organization
(Spelke and Kinzler, 2007). For example the place/grid cells
of the hippocampal/entorhinal system could contribute initial
structuring of experience according to space and time (Moser
et al., 2008; Buzsáki and Tingley, 2018)—although these
response-properties may substantially depend on experience
for their emergence (Kropff and Treves, 2008; Kaplan and
Friston, 2018)—with a general capacity for tracking time-
varying sequences being a potentially ubiquitous feature
of cortex (Hawkins and Blakeslee, 2004). Implicit objective
functions from innate salience mechanisms—e.g., maximizing
information gain and empowerment (Redgrave et al., 2008;
de Abril and Kanai, 2018)—and neuroplasticity rules such
as spike-timing dependent plasticity (Hayek, 1952; Markram
et al., 2011) could both be thought of as “evolutionary priors”
that further help to organize experience according to likely
patterns of causal influence (e.g., causes ought to precede
effects). However, Helmholtz’s criticism of Kant’s intuitions may
also highlight important differences between initial inductive
biases and later constructive modeling of space (Terekhov and
O’Regan, 2016), time (Buonomano, 2017; Wittmann, 2017),
and cause (Buchsbaum et al., 2012). It may be misleading to
refer to largely innate mechanisms for structuring experience as
“intuitions,” as these capacities may lack experiential content by
not (yet) affording sufficient coherence for the generation of an
experienceable world. Finally, agency-related knowledge may be
particularly complex, diverse in its forms, and dependent upon
experience for its development (Kushnir et al., 2015; Kushnir,
2018; Chernyak et al., 2019).

Hence, while IWMT suggests that quasi-Kantian categories
may represent essential “core knowledge” for bringing forth
a world with particular properties (such that they may be
experienced), many questions remain unanswered. To what
extent are our intuitions of space and time elaborated by our
intuitions regarding causal unfolding that depend on the agentic
self as a point of view on the world (De Kock, 2016; Ismael,
2016)? If coherence-making is bidirectional in this way, would
this imply a kind of mutual bootstrapping in learning of self,
agency, and space/time/cause over the course of development?
If sense-making involves this kind of bidirectionally, or capacity
for inferential positive feedback, could the mutual dependency
of subjective categories of experience partially explain non-
linear shifts in psychological development (Isler et al., 2018)? Do
different categories and intuitions asymmetrically drive different
parts of development at different points in time? While these
questions will not be definitively answered here, they may point

the way to helping to identify which systems possess which
forms of consciousness.

Neural systems for coherent world
modeling

As hopefully is made clear by the preceding discussion,
philosophical considerations may be invaluable for helping to
identify fundamental properties enabling conscious experience.
Whether considered as synthetic a priori categories or
experience-dependent constructed intuitions, the foundations
of mind suggest that a primary task for cognitive science should
be characterizing these properties on functional, algorithmic,
and implementational levels of description. While such an
analysis is beyond the scope of a single article, here I
suggest neural systems that could contribute to some of these
foundational capacities.

Integrated world modeling theory identifies two main
sources of consciousness for space: (1) a sense of locality
based on body-centric coordinates (Terekhov and O’Regan,
2013), and (2) introspectable 2D maps (Haun and Tononi,
2019) organized according to quasi-Cartesian coordinates with
irregular spacing biased by salience and ‘navigation’ potential.
Body-centric spatial senses would likely primarily be found in
superior and inferior parietal cortices based on convergence of
the dorsal visual stream and upper levels of the somatosensory
hierarchy. 2D spatial maps can be found throughout the
brain, but consciously accessible mappings are likely primarily
localized to the precuneus at the brain’s posterior midline. These
precuneus-based maps may couple with the more well-known
spatial maps of the hippocampal/entorhinal system (Moser et al.,
2008; Faul et al., 2020), so allowing for ‘navigating’ (Kaplan and
Friston, 2018) through visualized domains. IWMT suggests that
hippocampal representations of spatiotemporal trajectories are
unlikely to be directly introspectable, as deep spatiotemporal
hierarchies and grounding within sensory modalities are likely
required for coherent conscious experience. Precuneus-based
maps may also be aligned with dynamics in the dorsomedial
prefrontal cortex (another midline structure) (Hassabis et al.,
2014; Li et al., 2018; Faul et al., 2020), which may potentially
be interpreted as sources of “attention schemas” (Graziano,
2019), upper levels of action hierarchies, and—perhaps most
saliently with respect to conscious awareness—as an additional
level of hierarchical control over the pre-supplementary eye
fields (Safron, 2021b). With precise sequencing shaped by
striatal-thalamic-cerebellar loops (Gao et al., 2018), these frontal
representations may provide a source of coherent vectors for
directing the “mind’s eye,” so influencing what is likely to be
‘projected’ onto the precuneus as a kind of inner ‘theater’
(Figure 1). Mechanistically, these action-oriented influences
on perception may further depend on pulvinar-mediated
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FIGURE 1

Precuneus as shared latent (work) space and source of visuospatial phenomenology. This figure depicts elements of world-modeling within the
brain of a person who is pouring themselves a cup of tea. The precuneus may be particularly central for integrated world modeling. This
posterior-medial structure is depicted as a kind of “Cartesian theater” that provides a basis for visuospatial modeling and phenomenal
experience. In IWMT, “self-organizing harmonic modes” (SOHMs) are introduced as mechanisms in which synchronous complexes provide
enhanced communication-through-coherence, entailing the calculation of joint marginal probability distributions for the subnetworks over
which they form. This image depicts SOHMs in the form of beta complexes (in shades of red) and an alpha complex (in blue). Trapezoid-like
shapes outlined in purple represent folded (recurrent) autoencoders, which provide an algorithmic description of the kinds of computation
realized by these biophysical processes. (For more information about autoencoders, please see Supplementary Appendix; Safron, 2020a). In
the left panel, small and fast beta-synchronized SOHMs close to primary modalities infer estimates of the causes of sensations in terms of
low-level stimulus features. In the middle panel, these features are combined within the synchronization manifold provided by somewhat larger
and slower forming beta SOHMs, so providing a source of more abstract and potentially more behaviorally meaningful object-like modeling. In
the right panel, SOHMs evolving at alpha/beta-frequencies aggregate information for precuneus-centered models in which complex features
are bound together into an even larger visual field with specific composition and integrated information content. IWMT suggests that this is the
level of deep temporal modeling at which visuospatial consciousness is achieved, and also explicit re(–)presentations. While not depicted, a
similar three-level hierarchy may be involved with the generation of somatospatial awareness from lateral parietal cortices. These shared latent
(work)spaces for autoencoding hierarchies are suggested to be structured according to the principles of geometric deep learning as kinds of
graph neural networks. Taken together, the “mind’s eye” and “lived body” (whose coupling may potentially be mediated by an additional
graph-mesh neural network for attention/intention schemas) would constitute the physical and computational substrates for phenomenal
consciousness, functioning as an integrated generative world model and cybernetic controller for embodied-embedded agents. Perhaps
strangely, experience may be exclusively realized via visuospatial and somatospatial awareness, including with respect to seemingly
non-spatial/somatic modalities such as hearing and olfaction.

synchrony for their realization (O’Reilly et al., 2017; Hu et al.,
2019).

Integrated world modeling theory suggests that we ought
to expect all phenomenal content to involve spatial aspects,
potentially requiring multi-level processes of spatialization.
Indeed, we may parse complex features by performing a kind of
multidimensional scaling (Hout et al., 2013) in which features
are mapped onto 2D spaces. The hippocampal/entorhinal
system may be particularly important for establishing these
mappings (Bellmund et al., 2016, 2018; Nau et al., 2018),
and potentially for establishing the routes by which we
are able to make sense of these complex domains by
performing (generalized) ‘navigation’ through their spatialized
representations (Safron et al., 2021a). For example, it has
recently been demonstrated that entorhinal grid cells are used
to spatially organize reward-related representations in the
ventromedial prefrontal cortex (another midline region), with
spatialization of task structure having behavioral significance for
reinforcement learning problems (Baram et al., 2019).

The nature of time perception may be somewhat more
complicated compared to space, and may even be conceptually
derived from initially spatial understanding (Levin et al.,
1978; Levin, 1992). While the entire brain (or at least much
of the neocortex) may be sensitive to temporally varying
sequences (Hawkins and Blakeslee, 2004), there seems to be
no singular clock for time perception. One candidate clock-like
mechanism potentially includes the formation of “global
emotional moments” via the insular salience hierarchy (Craig,
2009), with a greater density of salient events corresponding to
relatively slower experienced (but not necessarily remembered)
temporal unfolding. Speculatively, dopaminergic influences on
time perception (Soares et al., 2016; Buonomano, 2017) may
suggest that the ability to both track and simulate (and track via
simulations) causal sequences via actions may provide another
factor influencing time perception, with a greater frequency of
actions corresponding to elongated subjective timelines. Non-
mutually exclusively, relationships between dopamine and time
perception could be mediated by the hippocampal/entorhinal
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system (Mannella et al., 2013; McNamara and Dupret, 2017).
These influences could include multiple factors, such as the
frequency with which events are encoded as new memories, or
through the mapping of timelines onto (2D) spatial trajectories
with place/grid cells. Indeed, abilities to construct maps and
routes for navigation (broadly construed) may be primary
means by which space and time come together in brain and
mind. Such simultaneous localization and mapping mechanisms
may provide a basis for both the spatialization of time as
well as the temporalization of space, as these two modes of
quantization are fundamentally linked (and mutually defined)
in terms of velocity, which may be physiologically linked
via locomotion-dependent cholinergic midbrain nuclei (Lee
et al., 2014). Velocity estimation both requires and enables the
ability to track changing relative spatial locations, with speed
being time-varying displacement within space. Speculatively,
similar relationships between time and space might also be
mediated by mapping events onto body maps, both in terms of
using bodily representations as a kind of space (within which
things can change at varying speeds), as well as via potential
magnitude estimation via the intensity of proprioceptive and
interoceptive sensations. Finally, for linguistic beings such
as humans, it may be difficult to overstate the importance
of analogical/metaphorical construction processes for tying
together and expanding these fundamental categories (Jaynes,
1976; Lakoff and Johnson, 1999; Safron, 2019).

Causal understandings may be more difficult to map unto
neural systems than time and space. As previously mentioned,
some proto-causal understanding may derive from mechanisms
such as the ability of spike-timing dependent plasticity to
arrange events into likely time-varying sequences (Hayek, 1952;
Markram et al., 2011)—wherein causes can be expected to
precede events—or via salience mechanisms such as modulation
of midbrain dopamine by whether events are likely to have
been internally or externally generated (Redgrave et al., 2008;
de Abril and Kanai, 2018). However, understanding causation
requires more than these proto-intuitions, and in particular the
ability to generate counterfactual scenarios involving simulated
interventions, potentially providing an implementation of the
“do-operator” introduced by Judea Pearl for causal inference
with graphical models (Pearl and Mackenzie, 2018). While it
is unclear whether anything like the graphical representations
underlying Pearlean analysis are used by brains and minds,
the ability to simulate a variety of actions/interventions could
provide a basis for similar kinds of causal reasoning. However,
this ability to generate counterfactual scenarios likely required
the advent of internal dynamics that can be decoupled from
immediate engagement with the environment. Intriguingly,
such adaptations may have arisen relatively straightforwardly
with increasing degrees of cortical expansion, some of which
may have provided a difference in kind with respect to expanded
association cortices and a more freely operating default mode
network (Buckner and Krienen, 2013; Sormaz et al., 2018).

Finally, while the potential complexities of selfhood are
inexhaustible, a very minimal sense of self and agency could
potentially be derived from the reliable ability of embodied
brains to learn that bodies depend on particular sensors by
which they can perceive and effectors by which they can
act. Since sensors and effectors are located on and in the
body—and not elsewhere—the fact that bodily states are
uniquely perceivable and controllable may provide a relatively
straightforward means of construing models in which an
agentic self exists as a separate entity from the rest of
the (less immediately perceivable/controllable) world. While
a broad range of neural systems may contribute to self-
consciousness in diverse ways, IWMT focuses on body maps
and visuospatial models for scaffolding inferences about selves
and the (life)worlds in which they find themselves embedded.

Machine learning architectures
and predictive processing models
of brain and mind

Integrated world modeling theory suggests that many of
the processes and systems underlying consciousness may also
be describable in terms of computational principles from
machine learning. It may seem rather implausible that present
technologies could reveal deep principles about the nature of
mind, with potentially cautionary tales to be found in previous
metaphorizations based on the technology of the day. Is this
just another case of naïve arrogance of overgeneralizing from
the familiar and fashionable, akin to previous claims that
minds could be understood in terms of the accumulation and
release of pressures, or when nervous systems were suggested to
function according to the logical operations found in computers
(McCulloch and Pitts, 1943)? Metaphors in which brains are
understood as computers and even steam engines are both
consistent with IWMT and the Free Energy Principle and Active
Inference (FEP-AI) framework. Not only is there necessarily
a sense in which brains compute information, but the serial
operation of conscious access may even be thought of as a
kind of (neural) Turing machine (Dehaene, 2014; Graves et al.,
2014). Even more, if neural systems minimize [informational
(and possibly thermodynamic)] free energy (Kiefer, 2020),
then this may not only provide computational justification for
pressure-based analogies (Carhart-Harris and Friston, 2010),
but potentially even models inspired by the causal powers
of engines as systems that perform thermodynamic work
cycles (Safron, 2020a, 2021b). Thus, these previous attempts to
analogize the nature of mind with existing technologies may
have been surprisingly prescient.

Considering that FEP-AI has foundations in the free-energy
objective functions used to train Helmholtz machines and
autoencoders (Dayan et al., 1995), the rise of deep learning
may have afforded conceptual progress for understanding not
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just minds, but all dynamical systems (viewed as generative
models). The idea that deep learning could potentially inform
neuroscience ought to be relatively unsurprising (Hassabis
et al., 2017; Richards et al., 2019), in that artificial neural
networks were designed to try to capture relevant aspects of
nervous systems (McCulloch and Pitts, 1943; Lecun et al., 1998),
albeit with limited physiological detail and some biologically
implausible functionalities (e.g., training by backpropagation).
IWMT goes further in arguing that not only can useful
computational principles be derived from machine learning,
but some architectures may have close correspondences with
the neural processes contributing to consciousness via coherent
world modeling. Below I will review a few of these relevant
technologies and the ways functionally equivalent processes
might be realized in biological systems (Figure 2). (For more
detailed illustrations of these putative functional mappings,
please see Supplementary Appendix Figures B, C). I will
then go on to consider the implications of these suggested
computational mappings for informing IWMT and associated
theories.

Cortex as folded disentangled
variational autoencoder heterarchy

A predictive coding model of cortex may be approximated
by folding a disentangled variational autoencoder over at the
low-dimensional bottleneck such that levels align in encoders
and generative decoders (please see Supplementary Appendix,
“Autoencoders,” as well as Supplementary Appendix Figure
B), respectively implemented via hierarchies of superficial and
deep pyramidal neurons. To implement predictive coding,
descending messages from generative decoder networks would
continuously suppress (or “explain away”) ascending messages
from encoders. In this coding scheme, only failed predictions
from generative decoders get passed upwards through encoders,
with these prediction errors continuing to rise up hierarchical
levels until they can be successfully suppressed by the
descending stream. These descending predictions are generated
on multiple levels, both locally via recurrent dynamics, as well
as on a more global basis, potentially accompanied by unique
architectural features and discrete updating of integrative
models (Friston et al., 2017b; Parr and Friston, 2018b). Viewed
as folded autoencoders, these higher-level predictions would
constitute a parameterization of generative decoder networks by
samples from reduced-dimensionality latent feature spaces. As
training proceeds, such an architecture should form increasingly
predictive and sparse representations, so maximizing inferential
power, while also minimizing the number of messages that need
to be passed. This training for prediction and sparsification
would correspond to the development of models of increasing
accuracy, efficiency, and robust generalizability (Srivastava et al.,
2014; Ahmad and Scheinkman, 2019).

A predictive coding model of cortex would correspond to
not just a single (folded) autoencoder hierarchy, but a heterarchy
composed of multiple intersecting hierarchies, so enabling
cortical learning systems to obtain inferential synergy through
multi-modal sensory integration (McGurk and MacDonald,
1976; Eguchi et al., 2020). In terms of machine learning
principles, high-bandwidth connections between association
cortices could correspond to the chaining of low-dimensionality
bottlenecks from multiple autoencoders, so forming an
auto-associative network capable of supporting loopy belief
propagation (the potential functional significance of which
will be explored below). Neuroanatomically speaking, these
highly connected areas would correspond to the brain’s “rich
club” networks (Heuvel et al., 2012), including the 2D grid
structures described above (Figure 1), which could contribute
to spatiotemporal modeling (Haun and Tononi, 2019) in both
concrete physical and abstract (via spatialization) domains.

Theoretically, these subnetworks (entailing shared latent
space) may be well-modeled as graph neural networks (GNNs)
(Zhou et al., 2019; Safron, 2020a,b), which are gaining
increasing popularity as a means of efficiently modeling a
broad range of processes. From this perspective, experience-
dependent plasticity may be understood as implementing
a kind of implicit neural architecture search, which may
potentially produce GNN-like representational structures as
means of ensuring sufficiently rapid inference that estimates
of system-world configurations are capable of both informing
and being informed by action-perception cycles for embodied-
embedded agents. Yet it remains unclear whether inferences
from these subnetworks would themselves represent the
physical/computational substrates of consciousness, or whether
they would rather be necessary (but not sufficient) conditions
for realizing phenomenality (Safron, 2021c). While this is not a
necessary entailment of IWMT (and hence not a condition for
falsification), if deep association cortices were found to operate
according to principles of geometric deep learning, then it would
provide strong support for the ideas presented here.

Finally, the regulation of neuronal dynamics by diffuse
neuromodulator systems could be computationally understood
as parameterizing inference and learning with respect to the
formation of partially disentangled features in perception,
as well as through the selecting and sculpting of particular
policies for enaction (e.g., dopamine as precision weighting, or
Kalman gain) (Parr and Friston, 2018a). To the degree diffuse
neuromodulator systems both influence and are influenced by
overall levels of message passing, these chemicals could be
used to adaptively optimize generative models with context
sensitivity. Such alterations of cognition and consciousness may
be especially powerful with respect to the kinds of serotonergic
signaling involved with psychedelic compounds, which is an
area of active investigation for further developing IWMT
(Safron, 2020c; Safron and Sheikhbahaee, 2021).
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The conscious turbo-code

Turbo-codes are used for reliably sending data over noisy
channels (Berrou et al., 1993; Berrou and Glavieux, 1996),

with efficiency approaching the Shannon limit, suggesting near
optimality. These codes were independently discovered by the
cryptography community and Pearl (1982) as methods for
approximate Bayesian inference via loopy belief propagation

FIGURE 2

Depiction of the human brain in terms of phenomenological correspondences, as well as computational (or functional), algorithmic, and
implementational levels of analysis (Reprinted from Safron, 2021b). Depiction of the human brain in terms of entailed aspects of experience (i.e.,
phenomenology), as well as computational (or functional), algorithmic, and implementational levels of analysis (Marr, 1983; Safron, 2020b).
A phenomenological level is specified to provide mappings between consciousness and these complementary/supervenient levels of analysis.
Modal depictions connotate the radically embodied nature of mind, but not all images are meant to indicate conscious experiences.
Phenomenal consciousness may solely be generated by hierarchies centered on posterior medial cortex, supramarginal gyrus, and angular
gyrus as respective visuospatial (cf. consciousness as projective geometric modeling) (Rudrauf et al., 2017; Williford et al., 2018), somatic (cf.
grounded cognition and intermediate level theory) (Varela et al., 1992; Barsalou, 2010; Prinz, 2017), and intentional/attentional phenomenology
(cf. Attention Schema Theory) (Graziano, 2019). Computationally, various brain functions are identified according to particular modal aspects,
either with respect to generating perception (both unconscious and conscious) or action (both unconscious and potentially conscious, via
posterior generative models). [Note: Action selection can also occur via affordance competition in posterior cortices (Cisek, 2007), and frontal
generative models could be interpreted as a kind of forward-looking (unconscious) perception, made conscious as imaginings via
parameterizing the inversion of posterior generative models]. On the algorithmic level, these functions are mapped onto variants of machine
learning architectures—e.g., autoencoders and generative adversarial networks, graph neural networks (GNNs), recurrent reservoirs and liquid
state machines—organized according to potential realization by neural systems. GNN-structured latent spaces are suggested as a potentially
important architectural principle (Zhou et al., 2019), largely due to efficiency for emulating physical processes (Battaglia et al., 2018; Bapst et al.,
2020; Cranmer et al., 2020). Hexagonally organized grid graph GNNs are depicted in posterior medial cortices as contributing to
quasi-Cartesian spatial modeling (and potentially experience) (Haun and Tononi, 2019; Haun, 2020), as well as in dorsomedial, and ventromedial
PFCs for agentic control. With respect to AI systems, such representations could be used to implement not just modeling of external spaces, but
of consciousness as internal space (or blackboard), which could potentially be leveraged for reasoning processes with correspondences to
category theory, analogy making via structured representations, and possibly causal inference. Neuroimaging evidence suggests these grids
may be dynamically coupled in various ways (Faul et al., 2020), contributing to higher-order cognition as a kind of navigation/search process
through generalized space (Hills et al., 2010; Kaplan and Friston, 2018; Çatal et al., 2021). A further GNN is speculatively adduced to reside in
supramarginal gyrus as a mesh grid placed on top of a transformed representation of the primary sensorimotor homunculus (cf. body
image/schema for the sake of efficient motor control/inference). This quasi-homuncular GNN may have some scaled correspondence to
embodiment as felt from within, potentially morphed/re-represented to better correspond with externally viewed embodiments (potentially
both resulting from and enabling “mirroring” with other agents for coordination and inference) (Rochat, 2010). Speculatively, this partial
translation into a quasi-Cartesian reference frame may provide more effective couplings (or information-sharing) with semi-topographically
organized representations in posterior medial cortices. Angular gyrus is depicted as containing a ring-shaped GNN to reflect a further level of
abstraction and hierarchical control over action-oriented body schemas—which may potentially mediate coherent functional couplings
between the “lived body” and the “mind’s eye”—functionally entailing vectors/tensors over attentional (and potentially intentional) processes
(Graziano, 2018). Frontal homologs to posterior GNNs are also depicted, which may provide a variety of higher-order modeling abilities,
including epistemic access for extended/distributed self-processes and intentional control mechanisms. These higher-order functionalities may
be achieved via frontal cortices being more capable of temporally extended generative modeling (Parr et al., 2019c), and potentially also by
virtue of being located further from primary sensory cortices, so affording (“counterfactually rich”) dynamics that are more decoupled from
immediate sensorimotor contingencies. Further, these frontal control hierarchies afford

(Continued)
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FIGURE 2 (Continued)

multi-scale goal-oriented behavior via bidirectional effective connectivity with the basal ganglia (i.e., winner-take-all dynamics and facilitation
of sequential operations) and canalization via diffuse neuro-modulator nuclei of the brainstem (i.e., implicit policies and value signals) (Houk
et al., 2007; Humphries and Prescott, 2010; Stephenson-Jones et al., 2011; Dabney et al., 2020; Morrens et al., 2020). Finally, the frontal pole is
described as a highly non-linear recurrent system capable of shaping overall activity via bifurcating capacities (Tani, 2016; Wang et al.,
2018)—with potentially astronomical combinatorics—providing sources of novelty and rapid adaptation via situation-specific attractor
dynamics. While the modal character of prefrontal computation is depicted at the phenomenological level of analysis, IWMT proposes frontal
cortices might only indirectly contribute to consciousness via influencing dynamics in posterior cortices. Speculatively, functional analogs for
ring-shaped GNN salience/relevance maps may potentially be found in the central complexes of insects and the tectums of all vertebrates
(Honkanen et al., 2019), although it is unclear whether those structures would be associated with any kind of subjective experience. Even more
speculatively, if these functional mappings were realized in a human-mimetic, neuromorphic AI, then it may have both flexible general
intelligence and consciousness. In this way, this figure is a sort of pseudocode for (partially human-interpretable) AGI with “System 2” capacities
(Bengio, 2017; Thomas et al., 2018), and possibly also phenomenal consciousness. [Note: The language of predictive processing provides
bridges between implementational and computational (and also phenomenological) levels, but descriptions such as vector fields and attracting
manifolds could have alternatively been used to remain agnostic as to which implicit algorithms might be entailed by physical dynamics]. On
the implementational level, biological realizations of algorithmic processes are depicted as corresponding to flows of activity and interactions
between neuronal populations, canalized by the formation of metastable synchronous complexes (i.e., “self-organizing harmonic modes”;
Safron, 2020a). [Note: The other models discussed in this manuscript do not depend on the accuracy of these putative mappings, nor the
hypothesized mechanisms of centralized homunculi and “Cartesian theaters” with semi-topographic correspondences with phenomenology].

(McEliece et al., 1998). This method of extracting information
from noisy signals has found a wide range of uses, including with
respect to wireless communication standards. Perhaps these
codes were also discovered by natural selection?

Integrated world modeling theory proposes that turbo-
coding may be implemented by reciprocal effective connectivity
between auto-associated cortical hierarchies, entailing
shared reduced-dimensionality latent feature spaces among
coupled autoencoders (Supplementary Appendix Figure B).
Mechanistically, this would be realized by the formation of
large-scale synchronous complexes as self-organizing harmonic
modes (SOHMs) over connectivity backbones, some of which
may entail action-oriented body maps (i.e., lateral parietal
cortices) and visuospatial modeling (i.e., posterior medial
cortices). Algorithmically, this would correspond to the
calculation of approximate joint posteriors—and maximally
likely (MAP) estimates derived thereof—via loopy belief
propagation. Functionally, this would correspond to a series
of estimated world states of sufficient reliability to form
bases for action selection (Vul et al., 2014). Experientially,
this would correspond to the stream of consciousness.
(Note: While all synchronous complexes could potentially
be interpreted as engaging in turbo-coding on some level of
abstraction, IWMT suggests that only turbo-codes spanning
multiple modalities are likely to be capable of generating
conscious experiences).

The high-bandwidth message passing required for
conscious turbo-coding may be enabled by the brain’s rich-
club, which consumes up to 50% of cortical metabolism
(Heuvel et al., 2012). Theoretically, this metabolic expense
may be (evolutionarily) justified by reducing the overall
number of (noisy) neuronal signal transactions required to
achieve adequately reliable perceptual inference, so increasing
overall efficiency, and perhaps more importantly, decreasing
latencies with respect to action selection. Perhaps even more
importantly, turbo-coding over frontal-parietal networks may

enable the inferential synergy required for consciously accessible
experiences, and potentially the imagination of counterfactual
scenarios (Buchsbaum et al., 2012; Schmidhuber, 2012; Pearl
and Mackenzie, 2018), so facilitating (a) causal reasoning, (b)
planning, and (c) ‘offline’ learning (e.g., self-supervised training
via imaginative self-play).

Different rhythmic frequency bands may entail different
kinds of information with respect to conscious turbo-codes.
When beta complexes are cross-frequency phase coupled within
alpha rhythms in posterior cortices, this may correspond to
cross-modal message passing across the entire sensorium of
the organism, organized within egocentric spatial reference
frames, entailing consciousness (i.e., an experienced world)
(Figure 2). When these alpha and beta complexes are further
orchestrated by theta rhythms from the hippocampal/entorhinal
system and its “big loop recurrence” with frontal cortices
(Koster et al., 2018), this may correspond to action-driven
perception (including simulated actions), and reflective access
via comparisons amongst conscious states (Safron, 2021b;
Safron et al., 2021a).

Thus, turbo-coding may help to explain the functional
significances of some of the mechanisms enabling
consciousness. However, these modeling efforts may themselves
have a further (circular) causal significance in that they may
help to facilitate the conditions that enable them. Under normal
circumstances, only coherent and well-evidenced world models
are likely to enable loopy message passing to efficiently converge
upon (approximate) posteriors, which in turn allow consciously
experienced world models to arise. Perhaps similarly to the
development of mutually related capacities for spatiotemporally
and causally coherent world modeling, this kind of circular
bootstrapping suggests that inferential and learning capacities
may increase non-linearly, potentially resulting in relatively
abrupt (or punctuated) phase transitions for the evolution of
consciousness (Isler et al., 2018).
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In this view, consciousness emerges from an auto-
associative network of coupled generative decoders, connected
together to constitute a turbo-code. When message passing
is forced to converge via synchrony—and where synchrony
emerges from convergent message passing—this may entail
maximal a posteriori estimates as coherent/discrete vectors
with maximal control in governing overall system evolution,
sampled from probabilistic spatial-temporal-causal world
models. Thus, consciousness (as turbo-code) may not only
govern perception as Bayesian model selection, but also
action selection (broadly construed to include thought as
covert ’behavior’).

Future directions for integrated
information theory and global
neuronal workspace theory?

Integrated world modeling theory proposes that FEP-AI
can be used as a framework for synergistically combining
leading theories of consciousness, specifically focusing on IIT
and GNWT. Below we will discuss some of the ways in which
our understandings of the physical and computational bases
of consciousness may be advanced through this synthesis, and
then move on to discuss how these principles may also lead to
potential advances in artificial intelligence.

Modules and workspaces as complexes
of integrated information; potential
physical substrates of consciousness

Global neuronal workspace theory describes how global
workspaces allow otherwise isolated specialist modules to
exchange information. However, the dynamics by which local
modules and global workspaces interact remain poorly
understood. IIT describes how complexes of effective
connectivity can have varying degrees of cause-effect
power upon themselves. (For further details, please see
Supplementary Appendix, “A review of IIT terminology”).
However, the functional relationships between complexes
of integrated information remain poorly understood. With
FEP-AI as an integrative framework, it may be possible to
combine GNWT’s emphasis on function and IIT’s emphasis
on dynamics in mutually informative ways. A potentially
promising avenue is to apply IIT’s analytic approaches to
modules and workspaces as complexes with varying degrees
of irreducible self-cause-effect power, including with respect
to the ways integrated information varies over the course of
cognitive cycles. (For further details, please see Supplementary
Appendix, “Evaluating GNWT’s local modules and global
workspaces in terms of the axioms of IIT”).

Both local modules and global workspaces can be viewed as
constituting complexes of integrated information with varying
amounts of irreducible self-cause-effect power (phi). The extent
to which modules have more or less phi would specifically
depend on the phase of cognitive cycles. Specifically, if “ignition”
events correspond to the breakdown of local modularity via the
formation of larger complexes of effective connectivity, then
we would expect the relative phi for local modules and global
workspaces to vary in an inverse fashion. IIT might view this
changing modularity as trading off consciousness level between
modules and workspaces, with separate modules entailing
consciousness when they represent phi maxima, but with these
consciousnesses being replaced with a single consciousness
when workspace dynamics are present. IWMT and GNWT,
in contrast, would only view large-scale workspaces as being
capable of supporting conscious experiences.

Integrated information theory, in contrast to GNWT, does
not view consciousness as corresponding to a global workspace,
but only a posterior “hot zone” as constituting a phi maximum
(Boly et al., 2017). The involvement of frontal cortices may
be important for instantiating workspace dynamics of a more
global nature in terms of widespread availability of information,
but according to IIT, these systems would not themselves
represent physical substrates of consciousness. IWMT agrees
with IIT that basic phenomenality likely centers on posterior
cortices, and also agrees with GNWT that frontal cortices
are likely crucial for enabling conscious access and autonoetic
awareness.

However, IWMT disagrees with IIT that a given module
would necessarily be conscious if it constitutes a complex that
maximize integrated information (Phi). Rather, modules may
be conscious only if they entail integrated models with spatial,
temporal, and causal coherence for embodied systems and their
relationships to environments in which they are embedded.
Given the previously discussed properties of posterior medial
cortices, synchronous activity within posterior hot zones could
represent an instance of a (large) module being conscious
when not participating in global workspace dynamics via the
frontal lobes. However, this could also be viewed as a primarily
semantic argument, as complexes capable of synergistically
integrating information across occipital, temporal, and parietal
cortices could reasonably be said to be functioning as ‘global’
workspaces. Perhaps some disputes between GNWT and IIT
may be partially resolved by attempting to be more precise about
how widespread integration must be to ‘count’ as global.

Cognitive cycles and fluctuating
substrates of consciousness?

In mammals, “posterior hot zones” (Boly et al., 2017) may
be both necessary and sufficient for generating consciousness
(as integrated world modeling process), and these (both
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competitive and cooperative) attractor-formation processes may
tend to be strictly dominated by dynamics within posterior
association cortices. However, by coupling with posterior areas,
frontal cortices could help influence the specific compositions
of maximal complexes on their timescales of formation. Frontal
cortices may be able to influence posterior attracting networks
before maximal coherence/integration is achieved, so defining
spatial and temporal grains for qualia generation, enabling
intentional control of attention, working memory, and action
selection. When this effective coupling involves driving of
frontal cortices by posterior complexes, this information may
also be made more globally available for the sake of higher-
order modeling. In these ways, IWMT is also in agreement
with GNWT regarding the importance of frontal network hubs,
although this may be the case for conscious access, rather than
the more posterior-located processes that may be responsible for
generating coherent streams of experience.

These hypotheses could potentially be tested via transcranial
magnetic stimulation applied at different phases of cognitive
cycles (Madl et al., 2011; Sasai et al., 2016) in which (possibly
theta-coupled) alpha rhythms may alternate across frontal and
posterior cortices, assessing whether intervention influences
different kinds of either implicit [e.g., via perturbation
complexity index (PCI) methods] or explicit modeling
(Schartner et al., 2017). Alternatively, evoked complexity could
be time-stamped to endogenous potentials as a measure of
different kinds of integrative complexity. While PCI measures
can potentially be explained without appealing to IIT, they
can nonetheless be used as proxies for integrated information.
If GNWT and IIT are compatible in the ways suggested by
IWMT, then PCI should be higher during periods where
workspace dynamics are present. This could potentially be
tested by timing the TMS pulse to coincide with ignition events
during which large scale integration occurs, or evaluating
Lempel-Ziv complexity after putative ignition events such as
the p300 (Mashour et al., 2020; Riggins and Scott, 2020). If
integrative complexity measures were not found to be higher
accompanying workspace dynamics, this could potentially
falsify IWMT.

Perhaps relatedly, an unresolved issue within IWMT is
whether consciousness (as experience) corresponds to a series
of discrete “snapshots” (Crick and Koch, 2003; Madl et al., 2011;
Herzog et al., 2016), like a flipbook or sequential frames in
a cartoon/comic (Ha and Schmidhuber, 2018). Alternatively,
such discretization could reflect a process of consciously
accessing—or sampling from, as in inference via Markov chain
Monte Carlo (Gershman, 2019; Dohmatob et al., 2020)—an
otherwise continuous stream of experience. IWMT’s account
of synchronous complexes as entailing turbo-coding between
coupled autoencoders suggests that consciousness could either
be understood as flows of inference via traveling waves on a fine-
grained level, or as self-organizing harmonic modes (SOHMs)
when coarse-grained according to the scales at which various

forms of functional closure are achieved (Joslyn, 2000; Chang
et al., 2019), including those which would allow for the kinds
of higher-order cognition involved in conscious access, self-
awareness, forms of meta-awareness, acting with awareness, and
planning. In terms of the machine learning models described
above, ignition events could potentially be viewed as semi-
stochastic sampling from latent spaces, used by variational auto-
encoders to parameterize generative models in creating novel
combinations of features. If these samples are biased according
to histories of reward learning, then these events/samples
could correspond to neural dynamics (including those entailing
consciousness) being driven in directions that are most likely
to realize organismic value, given the data of experience. In this
way, it could be the case that ignition events themselves generate
consciousness as a series of “snapshots,” or maximal a posteriori
(MAP) estimates from nervous systems viewed as generative
models. Alternatively, it could be the case that ignition events
correspond to a source of vectors that parameterize generative
models that evolve through more continuous updating.

The seemingly continuous nature of the stream of
experience could be illusory, actually corresponding to a series
of MAP estimates realized by the turbo coding of ignition
events, corresponding to a parameterization of sampling
operations, with cortical hierarchies functionally understood
as coupled variational autoencoders. Or, iteratively forming
these largescale attracting-states may instead be a highly
efficient (and potentially optimal) means of realizing globally
coherent/integrated inference, where organizing behavior based
on a series of estimates has been demonstrated to also be highly
efficient from a decision-theoretic perspective (Vul et al., 2014).
All these perspectives may be accurate, except with respect to
different aspects of experience unfolding on different scales.
While frontal-mediated conscious access may be discrete,
posterior-generated basic phenomenal consciousness may truly
be more like a continuous stream of entangled inferences,
whose—potentially shockingly limited (Chater, 2018)—richness
overflows awareness.

Integrated world modeling theory currently does not have
a definitive prediction as to whether the prefrontal cortices
(PFCs) ever represent a physical substrate for consciousness
as suggested by GNWT. While a “posterior hot zone” may
provide both necessary and sufficient conditions for generating
experience as suggested by IIT, it is unclear that frontal cortices
ought to be considered as separate from these generative
processes, particularly during ignition events in which large-
scale frontoparietal complexes are observed. Alternatively,
it may be the case that frontal cortices are incapable of
significantly driving the heavily entangled internal dynamics of
posterior cortices on the timescales at which integration occurs,
where posterior-centered inter-relations may have enough
causal density to establish functional closure with respect to
the processes generating coherent (and so experienceable)
world models. Considerations of developmental necessity may
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also be relevant to debates between IIT and GNWT regarding
the neural substrates of consciousness. Frontal cortices may
potentially be necessary for the initial development of basic
phenomenal consciousness, but not for its continued realization
after sufficient experience. That is, frontal cortices may be
essential for bootstrapping phenomenal consciousness via the
construction of coherent world models, but once developed,
these experience-generating capacities—but probably not
conscious access, contrary evidence notwithstanding (Bor et al.,
2017)—may be preserved even with complete disruption of
these initially necessary enabling conditions.

Yet another possibility is that frontal cortices may
themselves have enough integrative capacity over requisite
sources of information that they represent sufficient substrates
of consciousness on their own, potentially offering a source
of predictions for what posterior cortices are likely to
experience in the future (Knight and Grabowecky, 1995; Ha
and Schmidhuber, 2018; Wang et al., 2018). This hypothesis
of forward-looking PFCs would be consistent with their roles
in action selection and motor control through predicting the
sensory consequences of movement (Adams et al., 2013).
However, for frontal cortices to generate experience on
their own, IWMT would require sufficiency with respect to
establishing perspectival reference frames with spatiotemporal
and causal coherence. Regardless of whether or not frontal
cortices are considered to be directly part of subnetworks
generating consciousness, the nature of subjective experience
will likely heavily depend on their involvement as emphasized
by GNWT and higher order theories (Brown et al., 2019; Shea
and Frith, 2019). While (very difficult to test) dissociations
may be expected with respect to phenomenal consciousness
being possible without conscious access, the qualities of
experience will depend on their multi-scale interactions
with higher order cognitive processes. For example, the
act of introspecting will substantially change the nature of
what is (a)perceived (e.g., attention; Sperling phenomena)
(Manning et al., 2012).

Bayesian blur problems and solutions;
quasi-quantum consciousness?

While the brain probably does not support the kinds of
large-scale coherence required for quantum computation
(Schmidhuber, 2000; Tegmark, 2000), it may nonetheless
be the case that neuronal dynamics can be viewed as
emulating quantum-like computations (e.g., annealing) by
classical means (Borders et al., 2019; Coyle et al., 2019;
Guillet et al., 2019). Machine learning algorithms play a
central role in IWMT, and quantum implementations of
autoencoders (e.g., as used in error-correcting codes) may
be relevant for making further advances in developing
functional analogs for the computational properties

of brains. Very speculatively, it may even be the case
that dynamic reconfigurations of neuronal microtubules
could emulate quantum-like computation in orchestrating
signaling (e.g., via transportation rates for neurotransmitter
containing vesicles) and memory (via synaptic modifications
and synaptogenesis), while not themselves involving
sustained quantum coherence (cf. Orch OR theories)
(McKemmish et al., 2009).

Indeed, quantum mechanics inspired models could have
potential relevance to solving the “Bayesian blur problem”
(Clark, 2018). That is, how can a probabilistic model generate
seemingly unified experience (cf. the intuition underlying the
exclusion axiom from IIT) composed of discrete perceptual
experiences, rather than a superposition of possibilities?
Functionally speaking, it may be desirable for the brain to
provide discrete estimates of—or highly precise distributions
over—world states for the sake coherent action selection.
However, a “Bayesian blur solution” could also be proposed,
in that it may also be desirable to maintain full probability
distributions with multiple possibilities kept in play for the
sake of adaptation and exploration. In considering workspace
dynamics as implementing Bayesian model selection, it may
be the case that brains obtain the best of both discrete and
probabilistic modeling by “dividing and conquering” across
different phases of cognitive cycles, or possibly across brain areas
(Gazzaniga, 2018; McGilchrist, 2019). Alternating workspace
modes—potentially reflected by the formation/dissolution of
mesoscale connectomic modularity (Betzel et al., 2016; Safron
et al., 2021b)—could allow periods where multiple competing
and cooperating hypotheses can remain in play, followed by
winner-take-all dynamics when this information is integrated
into larger scale networks and models (Cheung et al.,
2019), and then “broadcasted” back to modules as they
re-form.

Stanislas Dehaene intriguingly (2014) suggested that
the formation of workspaces via ignition events could be
understood as a kind of phase change akin to those observed
in physical systems. He goes onto propose that a potentially
productive analogy could be found in models of wave
function collapse in quantum physics, where a superposition
of possibilities is reduced to a determinate classical world,
which IWMT considers to be a promising avenue for future
investigation. It may be similarly productive to explore whether
multiple interpretations of quantum mechanics apply to varying
degrees as abstract descriptions of varying informational
modes within minds, understood in terms of varieties of
Bayesian model selection and inferential dynamics. That is,
conceptualizations from multiple quantum interpretations
(Schmidhuber, 2000; Tegmark, 2014; Carroll, 2016) could
potentially apply to different aspects of integrated world
modeling. Could entanglement be used to model changes
in the precision of probabilistic densities as a function of
coupling sub-systems? Could more precise distributions
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(or estimates derived thereof) due to re-entrant signaling
from PFCs be used to implement a kind of Copenhagen-
style observer-dependent selection of classical phenomena?
Could marginalization via self-organizing synchronous
complexes be modeled in a similar manner to spontaneous wave
function collapse (and quantum Darwinian interpretations)?
Could periods of high modularity/segregation for functional
connectomes be productively analogized with branching
many worlds? Could relationships between fine-grained
neuronal message passing and standing wave descriptions
exhibit abstract similarities with Bohmian pilot waves (e.g.,
chained gamma complexes as quantized prediction errors
and solutions)? To be clear, these are all (very) highly
speculative analogies for information dynamics, and quantum
physical phenomena are likely not directly relevant to the
brain’s computational abilities in any meaningful sense,
given the hot and crowded nature of biological systems
(Tegmark, 2000). Nonetheless, such metaphors/models
may potentially afford insights into the nature of neuronal
information processing and its connections to different aspects
of consciousness.

Regarding “consciousness as collapsing agent” theories
(to continue with the analogical extension of quantum
mechanics described above): If PFC involvement is important
for establishing synchronous coherence in posterior cortices,
then this process of dimensionality reduction over dynamics
may potentially be likened to wave function collapse by
a (potentially unconscious) PFC ‘observer.’ That is, the
operation/action of conscious access via PFC re-entry may be
required for transforming a continuous sea of probabilities
into a discrete stream of experience—as the iterated generation
of particular qualia. If the “Bayesian blur” problem is
overcome in this manner, then experience may not be
solely generated by posterior cortices as described above,
potentially favoring GNWT’s suggestion that frontal lobes are
part of the physical substrates of consciousness. However,
this functionality could potentially be achieved at different
stages of cognitive cycles, so excluding PFCs from stages
where consciousness is generated (cf. dual phase evolution)
(Paperin et al., 2011). Another possibility would involve basic
phenomenal consciousness being more diffuse/probabilistic
without PFC-involvement, but where conscious access is
more particular/discrete. But if this kind of PFC-independent
modeling lacks sufficient organization with respect to space,
time, and cause, then there may be insufficient coherence
to result in the appearance of an experienced world. If this
were the case, then it would challenge the distinction between
phenomenal consciousness and conscious access, and may
potentially support some theories emphasizing higher order
cognition (LeDoux and Brown, 2017). The evolving adversarial
collaboration between IIT and GNWT theorists may potentially
provide evidence that could disambiguate some of these
matters.

Mechanisms for integration and
workspace dynamics

Integrated world modeling theory views ignition events
in terms of the formation of self-organizing harmonic modes
(SOHMs), entailing message passing in nervous systems
understood as Bayesian belief networks. In this way, the
formation of any meta-stable synchronous complex is viewed
as both an ignition event and establishment of a kind
of workspace, regardless of whether involvement of frontal
lobes and ‘global’ ‘access’ are achieved. In all cases, SOHMs
are hypothesized to entail loopy belief propagation and
marginalization over effectively connected subnetworks. (For
more detail, please see Supplementary Appendix, “Micro-
dynamics of SOHM-formation via generalized synchrony”).
In the case of small ensembles synchronized at fast gamma
frequencies, SOHMs may contribute to the communication
of prediction errors up cortical hierarchies (Bastos et al.,
2012; Scheeringa and Fries, 2019) via quantized packets of
information (as sufficient/summary statistics), so establishing
marginal message passing regimes (Parr et al., 2019b). In
the case of large ensembles synchronized at beta, alpha, and
theta frequencies, SOHMs may allow for large-scale updating
of beliefs and sources of integrative predictions from deeper
portions of generative models.

In terms of mesoscale and macroscale neuronal dynamics,
we might expect large-scale SOHMs to be particularly likely
to form in proximity to rich-club hubs of the brain with their
high degrees of reciprocal connectivity. These core networks
have been found to provide backbones of effective connectivity
and robust sources of synchronizing dynamics (Castro et al.,
2020). Within these highly interconnected systems, signals may
be particularly likely to undergo positive feedback amplification,
where this explosive signal transduction may be able to
temporarily form synchronous complexes capable of integrating
information from across the brain and then propagating (or
“broadcasting”) this information to the rest of the network as
Bayesian beliefs (or priors in predictive coding).

In terms of generalized synchrony, direction of entraining
influence may potentially switch between peripheral and core
networks before and after critical ignition events (Safron
et al., 2021b). Theoretically, peripheral sensory hierarchies may
asymmetrically entrain deeper levels with core connectivity,
seeding them with ascending prediction errors, communicated
via driving inputs at gamma frequencies. In this way, Bayesian
model selection would be driven via a process of differential
seeding of core states via competition (and cooperation)
amongst neuronal coalitions entailing hypotheses regarding
latent causes of sensory observations. These discretely updated
core states from deep in the heterarchy could then be used
to asymmetrically drive peripheral networks. According to
IWMT, these core inferences would be communicated at
beta frequencies for specific predictions, alpha frequencies for
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predictions integrated within egocentric reference frames, and
theta frequencies for predictions shaped by particular actions
(broadly construed to include mental acts such as attentional
fixations; Parr et al., 2019a; Safron, 2021b). Thus, SOHMs and
the processes by which they form may function as complexes
of integrated information and sources of workspace dynamics,
so implementing Bayesian model selection on multiple levels.
This multi-level selection—which may also be understood in
terms of neural Darwinism and dual-phase evolution (Paperin
et al., 2011)—may proceed simultaneously over multiple scales,
with both global serial and local parallel integration being
implemented by SOHMs of varying spatial (and temporal)
extents.

It is worth noting that this proposal does not depend
on any given account of predictive processing being accurate.
For example, it may be the case that descending modulatory
inputs at slower frequencies do not necessarily involve
predictive explaining away, but could instead be used to
allow sensory observations to ascend with more feedforward
driving (Heeger, 2017; George et al., 2020)— which would
not be incompatible with an interpretation of attending
based on precision weighting (i.e., Kalman gain)—as may
be the case with respect to theta-gamma cross-frequency
phase coupling (Canolty et al., 2010; Buzsáki and Watson,
2012). It may be the case that slower frequencies could be
used to either inhibit or promote the relative contributions
of different sensory observations—communicated at faster
gamma frequencies—to iterative rounds of Bayesian model
selection. This kind of adaptive enhancement of prediction
errors may help to reconcile predictive processing with findings
that consciousness level and phenomenal binding have been
associated with increases in gamma power and inter-electrode
gamma coherence (Singer, 2001, 2007), potentially realized by
mechanisms involving zero-lag phase synchronization (Gollo
et al., 2014). Alternatively, it may merely be the case that
more precise predictions tend to be accompanied by increased
prediction errors, without observations being specifically
enhanced through attentional selection mechanisms. In either
case, predictive processing diverges with some more well-known
ideas in suggesting that gamma-band activity may not itself
generate consciousness, but may instead indirectly modulate
belief updating at slower frequencies.

Beyond integrated information?

Integrated information theory has evolved as a theory over
two decades of concerted effort, and further refinements and
elaborations of the theory are currently being developed. This
ongoing evolution has caused some people to question whether
IIT’s postulated mechanisms are truly grounded in axiomatic
principles of phenomenology (Bayne, 2018), and whether its
methods may contain questionable modeling assumptions.

Indeed, many of the most practically useful (and highly face
valid) phi estimation techniques rely on previous versions of
the theory, such as estimating integrated information based on
causal density (Barrett and Seth, 2011; Seth et al., 2011). (For a
more detailed discussion, please see Supplementary Appendix:
“Toward new methods of estimating integrated information”).

Much skepticism regarding IIT has resulted from
demonstrations of high phi values being associated with
systems for which there are strong a priori reasons to suspect
a lack of consciousness, such as the kinds of 2D grids used
in expander graphs (Aaronson, 2014). Yet such objections
to IIT’s validity can be readily handled by considering
integrated information to be necessary, but not sufficient for
consciousness without the cybernetic grounding suggested
by IWMT. However, the potential modeling capacity of even
a single 2D grid should not be underestimated (Wang and
Roychowdhury, 2019). With respect to the particular example
of the dubious consciousness of expander graphs, it should
be noted that such systems have many of the properties
which may contribute to the computational power of brains,
including small-world connectivity (Takagi, 2018), sparseness
(Ahmad and Scheinkman, 2019), and ability to support
error-correcting codes (Liu and Poulin, 2019). Theoretically,
an arrangement of hierarchically organized expander graphs
could be used to implement predictive processing and may
be functionally equivalent to the kinds of turbo coding
adduced by IWMT. Nonetheless IWMT states that such
systems will not be conscious unless their functionality enables
coherently integrated world modeling, which may be afforded in
mammalian brains by posterior medial cortices (Figure 1) with
respect to visual phenomenology and a sense of quasi-Cartesian
space (Sutterer et al., 2021).

Others have questioned the merit of emphasizing a single
measure for the informational dynamics of complex systems
(Mediano et al., 2019). This work has challenged the assumption
of pairwise causal interactions in networks, instead focusing
on dynamical complexity in terms of the decomposition
of integrated information into potentially coexisting modes
of informational flows. These novel measures reveal that
integration processes can be understood as aggregates of
multiple heterogeneous phenomena such as informational
storage, copy, transfer, erasure, downward causation, and
upward causation. Promisingly, these decomposed measures of
integrated information could allow for the creation of novel
methods for assessing informational dynamics, which may be
superior in some use cases.

Integrated world modeling theory agrees with Mediano et al.
(2019) that integrated information is not the only valuable way
to look at consciousness or complex systems more generally.
Nonetheless, aggregations of heterogeneous phenomena can
produce wholes that are greater than the sum of their parts.
Mind and life are two such phenomena, and this kind of
functional synergy may also apply to informational constructs
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(including mind and life). If integrated information corresponds
to self-model-evidence as described by FEP-AI, then this would
be a very special measure of dynamical complexity, potentially
indicating the ability of whole systems to be both stable,
adaptive, and even autonomous (Albantakis, 2017). Indeed,
connections between integrated information and self-organized
criticality further suggests that we may be dealing with a
measure that applies to all systems capable of not just persisting,
but evolving (Arsiwalla and Verschure, 2016; Arsiwalla et al.,
2017; Hoffmann and Payton, 2018; Takagi, 2018; Safron et al.,
2021b).

Recurrent networks, universal
computation, generalized predictive
coding, unfolding, and (potentially
conscious) self-world modeling

There may be a kind of generalized predictive coding and
implicit intelligence at play across all persisting dynamical
systems (Schmidhuber, 2000; Wolfram, 2002; Friston, 2019;
Friston et al., 2020; Safron, 2020a; Vanchurin, 2020). However,
according to IWMT, consciousness will only be associated
with systems capable of coherently modeling themselves and
their interactions with the world, likely requiring architectures
capable of supporting recurrent processing. This is not to say
that recurrence is necessarily required for the functionalities
associated with consciousness (Doerig et al., 2019), but recurrent
neural networks (RNNs) may be a practical requirement, as
supra-astronomical resources may be necessary for unrolling
an RNN into a functionally equivalent feedforward neural
network (FNN) for a system the size of the human brain across
even the 100s of milliseconds over which workspace dynamics
unfold. Further, the supposed equivalence of feedforward
and feedback processes are only demonstrated when unrolled
systems are returned to initial conditions and allowed to
evolve under identical circumstances (Marshall et al., 2017).
These feedforward “zombie” systems tend to diverge from the
functionalities of their recurrent counterparts when intervened
upon and will be unable to repair their structure when modified.
This lack of robustness and context-sensitivity means that
unrolling loses one of the primary advantages of consciousness
as dynamic core and temporally extended adaptive (modeling)
process, where such (integrated world) models allow organisms
to flexibly handle novel situations. Further, while workspace-like
processing may be achievable by feedforward systems, largescale
neuronal workspaces heavily depend on recurrent dynamics
unfolding over multiple scales. Perhaps we could model a single
inversion of a generative model corresponding to one quale
state, given a sufficiently large computational device (even if
this structure might not fit within the observable universe).
However, such computations would lack functional closure
across moments of experience (Joslyn, 2000; Chang et al., 2019),

which would prevent consciousness from being able to evolve
as a temporally extended process of iterative Bayesian model
selection.

Perhaps more fundamentally, one of the primary functions
of workspaces and their realization by dynamic cores of effective
connectivity may be the ability to flexibly bind information in
different combinations in order to realize functional synergies
(Singer, 2001; Baars et al., 2013; Greff et al., 2020; Safron
et al., 2021b). While an FNN could theoretically achieve
adaptive binding with respect to a single state estimate, this
would divorce the integrating processes from its environmental
couplings and historicity as an iterative process of generating
inferences regarding the contents of experience, comparing
these predictions against sense data, and then updating these
prior expectations into posterior beliefs as priors for subsequent
rounds of predictive modeling. Further, the unfolding argument
does not address the issue of how it is that a network may come
to be perfectly configured to reflect the temporally extended
search process by which recurrent systems come to encode
(or resonate with) symmetries/harmonies of the world. Such
objections notwithstanding, the issue remains unresolved as
to whether an FNN-based generative model could generate
experience when inverted.

This issue also speaks to the ontological status of
“self-organizing harmonic modes” (SOHMs), which IWMT
claims provide a functional bridge between biophysics and
phenomenology. Harmonic functions are places where solutions
to the Laplacian are 0, indicating no net flux, which could
be defined intrinsically with respect to the temporal and
spatial scales over which dynamics achieve functional closure
in forming self-generating resonant modes (Atasoy et al., 2016).
[Note: These autopoietic self-resonating/forming attractors are
more commonly referred to as “non-equilibrium steady state
distributions” in the FEP literature (Friston, 2019), which are
derived using different—but possibly related (Wu and Zhang,
2006)—maths.] However, such recursively self-interacting
processes would not evolve in isolation, but would rather be
influenced by other proto-system dynamics, coarse-graining
themselves and each other as they form renormalization groups
in negotiating the course of overall evolution within and
without. Are SOHM-like standing wave descriptions ‘real,’ or
is everything just a swirling flux of traveling waves? Or, are
traveling waves real, or is there ‘really’ just an evolving set
of differential equations over a vector field description for the
underlying particles? Or are underlying particles real, or are
there only the coherent eigenmodes of an underlying topology?
Even if such an eliminative reductionism bottoms out with
some true atomism, from an outside point of view we could
still operate according to a form of subjective realism (Carroll,
2016), in that once we identify phenomena of interest, then
maximally efficient/explanatory partitioning into kinds might
be identifiable (Hoel et al., 2016; Albantakis et al., 2017; Hoel,
2017). Yet even then, different phenomena will be of differential
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‘interest’ to other phenomena in different contexts evolving over
different timescales.

While the preceding discussion may seem needlessly
abstract, it speaks to the question as to whether we may be
begging fundamental questions in trying to identify sufficient
physical substrates of consciousness, and also speaks to the
boundary problem of which systems can and cannot be
considered to entail subjective experience. More concretely, do
unrolled SOHMs also entail joint marginals over synchronized
subnetworks, some of which IWMT claims to be the
computational substrate of consciousness? Based on the inter-
translatability of RNNs and FNNs, this question appears to be
necessarily answered in the affirmative. However, if the forms of
functional closure underlying these synchronization manifolds
require temporally extended processes that recursively alter
themselves (Rocha, 2000; Rudrauf et al., 2003), then it may
be the case that this kind of autopoietic ouroboros cannot
be represented via geometries lacking such entanglement.
Highly speculatively (and well-beyond the technical expertise
of this author), SOHMs might necessarily represent kinds
of “time crystals” (Everhardt et al., 2019; Chen et al., 2020;
Fruchart et al., 2021) whose symmetry-breaking might provide a
principled reason to privilege recurrent systems as physical and
computational substrates for consciousness. If this were found
to be the case, then we may find yet another reason to describe
consciousness as a kind of “strange loop” (Hofstadter, 1979,
2007; Lloyd, 2012), above and beyond the seeming and actual
paradoxes involved in explicit self-reference.

This kind of self-entanglement would render SOHMs
opaque to external systems lacking the cipher of the self-
generative processes realizing those particular topologies
(Rocha, 2000). Hence, we may have another way of
understanding marginalization/renormalization with respect
to inter-SOHM information flows as they exchange messages
in the form of sufficient statistics (Parr et al., 2019b), while
also maintaining degrees of independent evolution (cf. mean
field approximation) over the course of cognitive cycles
(Madl et al., 2011). These self-generating entanglements could
further speak to interpretations of IIT in which quale states
correspond to maximal compressions of experience (Maguire
and Maguire, 2010). In evaluating the integrated information
of systems according to past and future combinatorics entailed
by minimally impactful graph cuts (Tegmark, 2016), we
may be describing systems capable of encoding data with
maximal efficiency (Maguire et al., 2016), in terms of possessing
maximum capacities for information-processing via supporting
“differences that make a difference.” A system experiencing
maximal alterations in the face of minimal perturbations would
have maximal impenetrability when observed from without,
yet accompanied by maximal informational sensitivity when
viewed from within.

If we think of minds as systems of interacting SOHMs, then
this lack of epistemic penetration could potentially be related

to notions phenomenal transparency (via opacity) (Metzinger,
2009; Limanowski and Friston, 2018), and perhaps “user
interface” theories of consciousness (Hoffman and Prakash,
2014). Intriguingly, maximal compressions have also been used
as conceptualizations of the event horizons of black holes, for
which corresponding holographic principles have been adduced
in terms of internal information being projected onto 2D
topologies. With respect to the FEP, it is also notable that
singularities and Markov blankets have been interpreted as both
points of epistemic boundaries as well as maximal thermal
reservoirs (Kirchhoff et al., 2018). Even more speculatively,
such holography could even help explain how 3D perception
could be derived from 2D sensory arrays, and perhaps also
experienced this way in the form of the precuneus acting
as a basis for visuospatial awareness and kind of “Cartesian
theater” (Dennett, 1992; Haun and Tononi, 2019; Safron, 2021b;
Sutterer et al., 2021). As described above, this structure may
constitute a kind of GNN, utilizing the locality of recurrent
message passing over grid-like representational geometries for
generating sufficiently informative projections on timescales
proportional to the closure of action-perception cycles (Safron,
2020b). And when coupled with lateral parietal cortices (as
upper levels of body map hierarchies), these cortical hubs may
theoretically (and potentially exclusively) constitute the physical
and computational bases of phenomenal consciousness (Safron,
2021c).

Conclusion

In attempting to expand on the questions raised by
IWMT, opinions will surely vary as to whether we have made
substantial progress on contributing to a satisfying solution to
the Hard problem of consciousness, or the meta-issue as to
whether this is even a real problem (Chalmers, 2018). Several
open questions remain, which are currently being explored
in the context of models of self-consciousness and agentic
control (Safron, 2021b), the hippocampal/entorhinal system
as a basis for episodic memory/imagination and high-level
cognition (Safron et al., 2021a), cognitive/affective development
(Ciaunica et al., 2021; Safron, 2021a), and the computational
neurophenomenology of psychedelics (Safron, 2020c; Safron
and Sheikhbahaee, 2021).

Directions for future study are numerous and varied,
but some particularly promising avenues would likely include
focusing on the relationships between consciousness and other
closely related constructs such as attention and working
memory (Wyart and Tallon-Baudry, 2008; Montemayor and
Haladjian, 2015; Haladjian and Montemayor, 2016). That
is, different forms of consciousness constitute potentially
powerful (and flexible) mechanisms for top-down attentional
selection, and bottom-up attentional selection mechanisms
help to influence which patterns are likely to enter into
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fields of consciousness. If neural ensembles are capable of
‘resonating’ with dynamic cores (entailing self-world models) by
having compatibly aligned activity, then we may expect deeper
processing of these consistent (or consonant) patterns. However,
we may also have attentional selection via various kinds of
“mental actions” (Sandved-Smith et al., 2021; Ramstead et al.,
2022), potentially with qualitatively distinct mechanisms such
as theta-gamma cross-frequency phase coupling as mediated by
hippocampal and frontal brain systems (Safron et al., 2021a).

It has also been suggested that there may be correspondences
between IWMT and higher order theories such as Attention
Schema Theory (Graziano, 2019; Safron, 2021b), with
workspace-supporting networks of structural (and effective)
connectivity potentially being understood as supporting both
attention and action-oriented body schemas. If this were found
to be the case, then it may have relevance for explaining how
biological systems handle the “frame problem” of determining
the scope of relevance for any given situation. That is, if
consciousness is so deeply embodied that it is inherently
structures all percepts via their affordance relations, then
enactive minds may handle the frame/relevance problem nearly
automatically. Regardless of whether such speculations are
supported, investigating relationships between attentional
selection and consciousness is of crucial importance, as it
may provide one of the strongest means of determining the
extent to which intelligence may be facilitated by different
forms of conscious processing, potentially revealing the
adaptive significance(s) that drove their evolution, and possibly
suggesting future directions for developing artificial general
intelligence.

Perhaps the Hard problem will only be definitively solved
when we can settle when different forms of consciousness first
evolved. This is an extremely difficult question, as mental states
do not leave fossils, but must be inferred from combining
assumptions regarding the functional capacities of different
information processing systems and their likely behavioral
consequences. A broad range of selective pressures may
have contributed to the advent of consciousness and further
elaborations in conscious cognition as major transitions in
evolution:

1. Cognitive arms races between predators and prey
(Godfrey-Smith, 2016), where the evolution of jaws in fish
may have been a particularly important milestone (Martik
et al., 2019).

2. The transition of aquatic animals to land resulting in
increased capacity for long-distance vision approximately
380 million years ago, and so increased adaptive
significance for being able to plan ahead (MacIver
et al., 2017; Mugan and MacIver, 2019).

3. Selection for precise visualization associated with reaching
and grasping of food by prosimians with capable hands
(Sagan, 1977).

4. Selection for cognition and visualization abilities to
facilitate the coordination required for highly social
animals (Tomasello, 2014), and perhaps especially pack-
hunting species.

5. Selection for planning when standing afforded increased
abilities to see ahead (Russon and Begun, 2007). Further
selection for visualization may have occurred due to the
challenges associated with bipedal running.

6. Increased selection for precise visualizations with tool-
use, including with respect to thrown projectiles during
hunting. While such abilities are often considered to be
separate from explicit cognition, there is also evidence
that counterfactual imaginings are important for guiding
implicit learning processes for complex motor sequences
(Kilteni et al., 2018; MacKay, 2019).

However, while would all represent situations in which
expanding the capacities of conscious processing may have
undergone selection, it is unlikely that any of these scenarios
adequately addresses the first origins of the evolution of
consciousness (as integrated world modeling). For further
speculations on this matter, see Supplementary Appendix,
“A tentative timeline for the evolution-development of
consciousness according to IWMT”.

Ginsburg and Jablonka (2019) have suggested a promising
approach based on identifying “evolutionary transition
markers,” or adaptations which likely require consciousness
for their functioning. Capacities for “unlimited associative
learning” are proposed to be the clearest candidate for
identifying conscious systems, and are suggested to have arisen
around the Cambrian explosion among a wide variety of
animals, including arthropods. While consciousness would
be very likely to increase the flexibility and cumulative nature
of learning processes, IWMT currently does not have a clear
position as to whether such processing is necessarily conscious.
Indeed, the hippocampal/entorhinal system may be the clearest
example of a set of adaptations for flexible learning (Safron
et al., 2021a), yet many of these functionalities could potentially
be realized unconsciously. In brief, IWMT suggests that
consciousness first evolved as a means of generating estimates
of likely system-world states, conditioned on a causal world
model trained via histories of experience with environmental
interactions (including vicarious observations of the actions
of others). Such a predictive nexus of integrated information
(or “dynamic core”) and workspace could potentially help to
realize much of unlimited associative learning, but its initial
functionality may have primarily been constituted as a “data
fusion” mechanism that structures experience for the sake of
more adaptive action selection and credit assignment (Safron,
2020b). That is, it could be highly adaptive to be able to identify
particular situations with coherent spatiotemporal organization
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of features with respect to self and world, with unlimited
associative learning potentially constituting a secondary
functionality. Future work will explore this issue in greater
depth.

Integrated world modeling theory was originally developed
based on three observations:

1. A substantial degree of convergence across theories of
consciousness, but with differences being emphasized over
similarities (cf. adversarial collaborations).

2. A substantial degree of convergence between principles
of machine learning and computational models of
brain functioning.

3. A surprising lack of consideration for the nature of
embodiment in attempting to explain how subjective
experience could arise from physical systems.

From this perspective, the most promising way forward
for consciousness studies would be for different theorists
to more deeply engage with opposing points of view and
search for opportunities for synergistic explanations. Further,
computational principles from machine learning may not only
provide a basis for adjudicating between competing claims,
but may provide a powerful algorithmic basis for bridging
functional and implementational levels of analysis (Figure 2).
This approach of “computational neurophenomenology”
involves connecting a multi-level understanding of mind to
core aspects of experience (Seth, 2021), for which IWMT
and compatible theories suggest that the core explananda are
likely the generation of a coherent egocentric perspective with
a “lived body” at its center (Rudrauf et al., 2017; Williford
et al., 2018). Toward this end, if a sufficiently detailed
account of the brain as a kind of hybrid machine learning
architecture could be obtained, and if this description was
consistent with other models on functional, algorithmic,
implementational, and phenomenal levels of analysis, then
many might finally consider the Hard problem to be solved.
I suggest that such an understanding would provide an
invaluable reference point for understanding numerous
aspects of minds, providing new means for intervention and
control, and perhaps even a basis for the greatest project of
all: attempting to create conscious artificial intelligence as
potentially world-changing technologies, and possibly as ends
in themselves.
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